氦气 氦气是一种无色、无味、不易燃的惰性气体,在空气中含量极少,但在天然气和二氧化碳田中含量较多,氦气主要从这些田中提取。氦气用于许多工业领域,包括医疗设备(MRI)、电子、航空航天工程、光纤、汽车、冶金、飞艇起重和呼吸混合物(例如深海潜水)。了解有关氦气的更多信息 液化空气海运公司是全球市场与技术 WBU 的一部分,开发海上石油和天然气平台、海上风力涡轮机的气体用途,以及氦气等高附加值分子的海上低温运输。液化空气集团遍布整个供应链,从卡塔尔最大的氦气提取装置到全球海上运输和配送。其覆盖全球的 300 多个集装箱船队可以有效运输温度接近绝对零度的高附加值分子,例如氦气。其集装箱依靠液化空气集团在低温和数字技术方面的专业知识,确保安全可靠的供应。
摘要。棋盘游戏《外交》被认为是自动谈判最具挑战性的测试案例之一。虽然已经为这款游戏开发了许多机器人,但其中很少有能够成功谈判的机器人,而那些能够成功谈判的机器人都是在人类示例游戏的大量数据集上进行训练的。这使得很难将相同的技术应用于其他游戏或谈判场景,因为人类目前还没有这些知识。此外,由于这些机器人是使用深度学习进行训练的,它们本质上是黑匣子,很难理解它们的工作原理。所以,这些机器人对我们更好地理解强有力的谈判技巧没有多大帮助。因此,在本文中,我们介绍了一种名为 Attila 的新外交机器人,它完全基于符号 AI。它的谈判算法利用了游戏战术部分的现有预言机,称为“D-Brane 战术模块”(DBTM)。我们解释了如何将 DBTM 转换为用于自动谈判的搜索算法,并通过实验表明 Attila 的表现远远优于几种最先进的外交机器人。
缺乏统一的初步设计技术来应对最新的电动和混合动力发电厂的特点,这往往是飞机制造商以及所有者和运营商面临的一个障碍,使得设计过程不那么直接,并且妨碍了与更传统的设计的比较。本文介绍了一种通用航空类电动飞机初步重量尺寸的技术。这是基于传统动力飞机的典型现有程序,集成在一个通用框架中,以适当解决电动飞机特殊特征引起的问题。然后,研究了将设计方法扩展到串联混合动力推进系统的情况。还介绍了虚拟环境中真实设计的结果。© 2017 作者。由 Elsevier B.V. 出版。同行评审由第 6 届 CEAS 航空航天会议 Aerospace Europe 2017 科学委员会负责。
电磁诱导的透明度(EIT)是一个连贯的光学过程,在原子培养基中的宽吸收线中提供狭窄的透明峰。EIT的全dielectric跨表面类似物已使纳米光子学场中的新发展获得了较小,更有效的慢灯设备和高度敏感的检测器,而无需量子方法。然而,尽管近红外(N-IR)区域很少报道全磁化元面的EIT响应的动态控制,尽管通过可重新配置的EIT系统将启用更广泛的应用程序。在这项研究中,我们意识到了硫元素(GST)的硫元化物(GST)元素元面,它通过光学地驱动GST培养基中的无定形 - 晶状相变的变化,具有动态调节的EIT响应。只有几十纳米厚,纳米结构的GST膜表现出MIE共振,这些共振通过激光诱导的相变经频谱修饰,在N-IR区域提供了高度相对调制的对比度为80%。此外,在此透明度“窗口”中观察到导致“慢光”行为的极端分散体。此外,N-IR梁的组延迟在相变下可逆开关。测量与数值模拟结果和现象学建模既一致。我们的工作促进了新型紧凑型超快N-IR全息图,过滤和超敏感探测器的发展。
1 德国埃尔朗根大学医院病理学研究所,埃尔朗根-纽伦堡弗里德里希-亚历山大大学,埃尔朗根 91054; veronika.weyerer@uk-erlangen.de(大众); markus.eckstein@uk-erlangen.de (中东); robert.stoehr@uk-erlangen.de(RS); Arndt.Hartmann@uk-erlangen.de (AH)2 Hôpital Tenon,HUEP,索邦大学,75020 巴黎,法国; eva.comperat@aphp.fr 3 波鸿鲁尔大学病理学研究所,德国波鸿 44789; hendrik.juette@ruhr-uni-bochum.de 4 亚琛工业大学病理学研究所,德国亚琛 52074; ngaisa@ukaachen.de 5 法国凡尔赛圣康坦伊夫林大学、巴黎萨克雷大学福煦医院病理学系,92150 叙雷讷; Yves.Allory@curie.fr 6 居里研究所,75248 巴黎,法国 7 埃尔朗根大学医院泌尿外科和小儿泌尿外科,埃尔朗根-纽伦堡弗里德里希-亚历山大大学,德国埃尔朗根 91054; Bernd.Wullich@uk-erlangen.de 8 索邦大学,GRC n5,ONCOTYPE-URO,AP-HP,泌尿科,Hôpital Pitié-Salpêtrière,75013 巴黎,法国; mroupret@gmail.com * 通讯地址:simone.bertz@uk-erlangen.de
摘要:量子信息的掩蔽意味着信息从子系统中隐藏,并分散到复合系统中。Modi 等人在 [Phys. Rev. Lett. 120, 230501 (2018)] 中证明,对于某些非正交量子态的受限集,掩蔽是正确的,而对于任意量子态,掩蔽是不可能的。在本文中,我们分别讨论了掩蔽纯态和混合态中编码的量子信息的问题。基于已建立的纯态集被算子掩蔽的必要条件和充分条件,我们发现存在一组四个不能被掩蔽的状态,这意味着掩蔽未知的纯态是不可能的。我们构造了一个掩蔽器 S ♯ 并获得了其最大可掩蔽集,从而对上述 Modi 论文中提出的猜想给出了肯定的回答。我们还证明了纯态的正交(或线性无关)子集可以通过等距(或注入)进行掩蔽。将纯态的情况概括起来,我们引入了一组混合态的可掩蔽性,并证明混合态的交换子集可以被等距 S ⋄ 掩蔽,但任何算子都不可能掩蔽所有混合态。我们还分别找到了等距 S ♯ 和 S ⋄ 的混合态的最大可掩蔽集。
量子状态估计[1],即概念确定量子系统的完整说明的过程,对于NUMER应用至关重要,范围从量子化处理处理到量子模拟。在D维量子系统中,可以通过带有单位迹线的阳性半明确复合物来描述状态。因此,量子状态估计需要了解至少D 2-1线性独立的遗产运算符的期望值。传统的提出这些期望值的方法是测量D 2-1广义的Gell-Mann矩阵[2,3]。但是,这种方法需要大量的实验资源和D大范围的时间。一种替代方法是测量d + 1个不偏的碱基[4-8]。虽然此组提供了更好的缩放,但它仍然是线性的,并且它不知道是否存在相互无偏的基础
A2D2A 模拟到数字再到模拟过程 AMPAS 英国电影艺术与科学学院 APC 平均制作成本 BAME 黑人、亚裔和少数族裔 BAFTA 英国电影电视艺术学院 BBFC 英国电影分级委员会 BECTU 英国广播、娱乐、电影和戏剧联盟 BFI 英国电影协会 BFIRSU UKFC/BFI 研究和统计单位 DCMS 英国政府文化、媒体和体育部(英国) EAO 欧洲视听观察站 EIFF 爱丁堡国际电影节 EIS 企业投资计划 FDA 电影发行协会(英国) FFE 欧洲电影档案 FTR 电影税收减免 GLA 大伦敦区 ICO 独立电影办公室(英国) HD 或 HDV 高清视频 HMRC 英国女王陛下税务海关总署(英国) IFFR 鹿特丹国际电影节 IMDb 互联网电影数据库网站 IPRs 知识产权 LGBT 女同性恋、男同性恋、双性恋和跨性别者/变性人 MPAA 美国电影协会(美国) MPC 最低制作成本 N/RSA 国家和地区影视机构(英国) NA 北方联盟(英国) NFTS 英国国家电影电视学校(英国) NPA 新制片人联盟(英国) PACT 英国电影电视制片人联盟(英国) PESTEL 政治、经济、社会、技术、环境和法律 PIBHC 住房成本前的个人收入 PSB 公共服务广播公司(英国) SAG 美国演员工会(美国) SEIS 种子企业投资计划 SWOT 优势、劣势、机会和威胁 TIFF 多伦多国际电影节 UKFC/BFI 英国电影委员会/英国电影协会(英国) VAT 增值税 VIFF 威尼斯国际电影节 VOD 视频点播 WGA 美国编剧协会(美国)
机器能思考吗?这个问题是艾伦·图灵在 1950 年发表的里程碑式论文《计算机器与智能》中提出的。图灵考虑了一种特殊的机器,即图灵机。现代电子数字计算机相当于图灵机,忽略了有限内存的限制。为了本文的目的,我们可以将计算机定义为任何相当于图灵机的机器。图灵的里程碑式论文在心灵哲学中播下了整个范式的种子,认为心灵本质上是一台计算机。更准确地说,心灵可以被认为是运行在大脑硬件上的软件程序,其心理状态与计算状态/过程相同。如果这是正确的,那么原则上没有任何障碍可以创造人工心灵(1)仅通过以适当的方式对计算机进行编程或(2)仅通过实现正确的计算过程。至少,这是当今许多计算机科学家和心灵哲学家的希望和信念。图灵本人对自己的问题给出了肯定的回答,并提出了一个测试——图灵测试——来确定计算机是否真正能够思考并具有心理。