超质纳米颗粒(USNS)(纳米颗粒具有流体动力直径<10 nm)的临时发展,并在过去十年中开始在临床试验中出现。这些USN的大多数都显示出相同的特征,包括在血液中短暂的保留时间,快速肾脏清除率以及对达到肿瘤的被动靶向策略的缓解。通过这篇综述,Aguix USN的发展侧重于它们的临床用法,因为它们是被动靶向USN的临床用法,而且由于它们可能在各种前临床前肿瘤模型中验证的肽和单克隆抗体的生物功能化。结果,作者审查了所有当前可以采用和确认的生物功能化策略,这些策略是基于对文献的荟萃分析,即生物功能化的USNS药代动力学和生物分布材料是由USN所决定的,而不是由USN和活跃的靶向靶向小组决定的。另外,与被动靶向的Aguix USN相比,这种主动靶向策略可以改善靶向靶向的肿瘤效率,但也增加了其肿瘤的保留时间,这可能会导致减少注射量/支出的机会。
摘要:在发现X射线后,闪烁体通常用作诊断医学成像,高能物理学,天体物理学,环境辐射监测和安全性检查中的高能辐射传感器。常规闪烁体面临的内在局限性,包括闪烁的光的提取效率低和发射率低,导致商业闪烁体的效率小于10%。克服这些局限性将需要新材料,包括闪烁的纳米材料(“纳米激素”),以及提高闪烁过程效率的新的photonic方法,提高材料的排放速率,并控制闪烁光的光的方向性。在这种观点中,我们描述了新出现的纳米弹性材料和三个纳米光子平台:(i)等离子体纳米纳米菌 - (ii)光子晶体和(iii)高性能闪烁体的高Q跨面。我们讨论了纳米激素和光子结构的组合如何产生“超闪烁体”,从而实现最终时空分辨率,同时在提取的闪烁发射中可以显着提升。