麦克乔德的 D 级空域位于西雅图塔科马国际机场的 B 级空域之下。此外,附近还有多个民用机场。商业航空公司、公务机和通用航空飞机广泛使用麦克乔德周围的空域。当地空域的飞机种类繁多,从超轻型飞机到超音速战斗机再到重型运输机。麦克乔德飞行安全办公室请求您的帮助,使该地区的天空成为更安全的飞行场所!请致电 (253) 982-3105 联系我们。
- 在抵达行星之前,太空运输过程中的任何时间都可以部署进入 • ADEPT 开发专注于进入金星作为延伸目标。由于进入条件更温和(例如金属肋条、碳纤维织物层数更少),火星 EDL 的使用风险较低 • ADEPT 的碳纤维织物气动热能力允许更陡峭的火星进入轮廓(更高的加热),从而减少着陆分散足迹 • 低弹道系数设计可以消除高风险的 EDL 事件(例如超音速降落伞)
许多应用都需要极端环境材料,例如超音速推进和热保护系统、飞机发动机和发电燃气轮机、核裂变和聚变能、聚光太阳能发电和工业制造。极端环境材料的固有特性和能力给制造业带来了巨大挑战。Mitchell 博士将讨论需要极端环境材料的应用、使用这些材料制造组件的挑战,以及他的实验室将进行的研究和开发,以创造下一代极端环境材料和先进制造工艺。
当物体穿过大气的速度大于当地音速时,该物体就是超音速物体。马赫数定义为物体速度除以当地音速。对于马赫数大于 1(超音速流),由于空气的压缩性,在流场中和物体表面附近会产生冲击波。传统上,所谓高超音速速度范围的马赫数下限约为 5 马赫(1.7 公里/秒)。“低高超音速”值的范围在 5 马赫到 10 马赫左右,而“高高超音速”值的范围在 10 马赫到 30 马赫或以上。例如,30 马赫(10 公里/秒)接近航天飞机的再入速度。很少有物体能够以高超音速飞行。我们看到以这种速度移动的最常见物体是进入地球大气层的流星。当流星坠落到地球表面时,它们的速度可能达到每秒 30 英里(48 公里/秒),1 而当它们进入大气层上层时,它们对应的马赫数将超过 150。流星在路径上立即压缩空气时,会先出现弓形冲击波。冲击波的温度和压力急剧增加,直到空气中的气体电离并分解,从而导致可见光和无线电波的发射。这些条件还会导致流星表面快速升温,导致它们在进入大气层时破裂和解体。光学和基于雷达的监视系统现在用于扫描外太空,以探测小行星和其他可能与地球相撞的轨道物体。
美国宇航局艾姆斯研究中心在 20 世纪 90 年代初对超音速商用客运斜翼全翼概念进行了设计研究。这项研究的参与者包括美国宇航局艾姆斯研究中心在斜翼设计方面拥有丰富经验的工作人员,以及来自西雅图波音商用飞机公司和加州长滩道格拉斯飞机公司的工程师,以及斯坦福大学的研究团队。行业合作的目的是确保将现实世界的设计约束纳入研究,并获得行业设计专业知识。斯坦福大学的团队建造并试飞了一架 17 英尺跨度的斜翼全翼无人机,展示了 3% 负静态稳定性的飞行。设计研究最终产生了两种机翼设计,称为 OAW-3 和 DAC-1。OAW-3 机翼由美国宇航局艾姆斯研究中心的团队设计,代表了基于配置约束和任务性能指标的高度优化设计。DAC-1 机翼由道格拉斯飞机公司的团队设计。它是一种经典的椭圆形平面形状,具有高度的气动形状优化,但设计并未根据整体任务性能指标进行优化。虽然两个机翼都在 9 x 7 超音速风洞中进行了测试,但只有 OAW-3 机翼拥有完整的控制面和发动机舱。本报告中描述的风洞数据仅在 NASA OAW-3 配置上获得。
这不仅仅是一个理论问题。对于超音速运输机,答案将在未来 6 到 9 个月内揭晓。参与当前开发阶段的政府和承包商都已通过合同认识到,双方需要解决许多令人担忧的问题,例如角色、关系和财务承诺。因此,已经建立了一个有序的程序,以便在下一阶段的工作(原型建造阶段)进行之前,将这些主题摆到桌面上,并共同确定最理想的基本规则。我认为,我们的政府,特别是负责管理合同的联邦航空局,应该为这一决定做出规定而受到赞扬。我会
《减弱音爆:异形音爆演示器和安静超音速飞行的探索》是对 2009 年初我有幸撰写的案例研究“减弱音爆:NASA 50 年的研究”的后续。这项相对较短的调查发表在《NASA 对航空学的贡献》第一卷(NASA SP-2010-570)中。尽管我之前熟悉航空史,但最初,我还是犹豫不决,是否要接触这个似乎如此深奥且技术性极强的话题。值得庆幸的是,一些有关过去超音速计划的信息性参考资料已经可以帮助我入门,最著名的是埃里克·M·康威的《高速梦想:NASA 和超音速运输的技术政治,1945-1999》,这本书在“减弱音爆”和随后的前四章中被频繁引用。中断两年之后,我在 2011 年 3 月恢复了音爆研究,并撰写了这本新书。我非常感谢著名航空历史学家理查德·P·哈利恩博士给我的机会,让他就这个迷人的主题进行写作。哈利恩博士是《美国国家航空航天局对航空的贡献》和新美国国家航空航天局 (NASA) 丛书的编辑,本书是该丛书的一部分。在扩充、更新并希望改进我之前的叙述的同时,本书的主要焦点是诺斯罗普·格鲁曼公司 (NGC) 以及一个由政府和行业合作伙伴组成的多元化团队所取得的突破,他们证明了飞机可以设计成显著降低音爆强度。我在 2008 年 12 月和 2011 年 4 月访问加利福尼亚州爱德华兹的德莱顿飞行研究中心 (DFRC) 期间得到了帮助,并通过电话和电子邮件与 DFRC 人员进行了交流,这对我的一手资料研究大有裨益。图书管理员 Karl A. Bender 博士向我介绍了 NASA 一流的科学和技术信息资源,并在 Freddy Lockarno 的帮助下,帮助我收集了大量重要文件。航空历史学家 Peter W. Merlin 在 Dryden 的档案馆藏中为我找到了其他资料来源。Dryden 的主要音爆研究者 Edward A. Haering 提供了宝贵的原始资料,回答了问题,并审阅了涉及他项目的章节。同事工程师 Timothy R. Moes 和试飞员 James W. Smolka 和 Dana D. Purifoy 帮助我提供了额外的
一氧化氮 (NO) 分子的平面激光诱导荧光 (PLIF) 已广泛用于风洞设施的流动可视化、速度和温度测量。实验 PLIF 测量结果通常与使用计算得出的温度、压力、速度和物种摩尔分数的合成 PLIF 图像进行比较。这种方法通常称为计算流成像 (CFI)。在目前的研究中,我们将 PLIF 模型的信号强度与在低压气室系统内在与超音速和高超音速流场相关的压力和 NO 摩尔分数下获得的实验 PLIF 测量结果进行比较。实验测量结果与文献中报道的几种不同的激光诱导荧光模型进行了比较,包括 LIFBASE、LINUS 和 NASA 两级模型。实验测量结果与所有模型在较低压力和较低 NO 摩尔分数下都吻合良好;那里的荧光与这两个参数都呈线性关系。然而,在更高的压力和摩尔分数下,信号相对于这些参数变为非线性,因为自猝灭限制了信号,而吸收进一步限制了信号。事实上,对于实验的实验路径长度,高压和高 NO 摩尔分数的组合导致实验结果与忽略入射激光片吸收的预测结果存在很大偏差。 LINUS 模型允许计算吸收,其结果与实验测量结果更吻合。 由于超音速和高超音速流场可能包含高压流动区域,并且大型设施中的测量通常包括长路径长度,因此忽略吸收可能会对 CFI 与实验 PLIF 图像的比较产生显着的负面影响。 因此,考虑吸收的 PLIF 模型应包括在激光诱导荧光的计算流成像方法中。
EAS301 航空动力学让学生对航空动力学和飞行力学的原理有基本的了解。在第一部分中,介绍了大气特性以及亚音速和超音速空气动力学流动理论。考虑了翼型和机翼理论以及翼型在升力面中的综合影响。描述了对阻力的重要贡献以及估算干净飞机阻力极点的简化方法。在介绍喷气发动机的基本概念后,讨论了无动力和有动力稳定对称飞行的基本飞行力学。还介绍了爬升性能和速度、起飞和着陆分析以及航程和续航能力等主题,以及基本的静态和动态操纵品质。EAS303 航空结构 - 特性和性能
为了使车辆使用空气呼吸引擎进行高超音速,航空工程师转向Scramjets,空气和燃料以超音速速度在燃烧器上行驶。改善这些发动机的主要挑战是,在空气和燃料退出发动机之前,有很小的时间来完成燃烧。这就是为什么Zucrow Labs可用的高级工具对于进一步开发如此重要的原因。Carson Slabaugh是激光燃烧诊断领域的领导者,帮助开发了Purdue的激光资源和高速检测设备的投资组合。基于石英的窗户更换了一部分燃烧器外壳,使研究人员可以直接观察到发动机内发生的燃烧。