自2016年以来,布拉迪斯拉娃(Bratislava)Comenius大学的数学,物理学和信息学学院(FMPI)经营着它拥有70厘米的牛顿重新流动(AGO70),其主要侧重于空间杂物对象的观察和表征。近年来,已经对AGO70的硬件和软件进行了几项重大更新,包括望远镜的安装控制单元(MCU),观察计划和控制系统(SCH,LLTC),图像处理系统(IPS)和TLE改进系统(TLEI)。MCU以及SCH和LLTC允许观察狮子座的物体,角速度高达1.5度/s。最关键的子系统之一是IPS,它已在不同类型的图像上进行了广泛的测试和验证,从使用Sidereal跟踪获取的图像到为Leo对象获得的图像。tlei提供了与卫星激光射程(SLR)传感器的界面,即由奥地利科学院(Austria)(奥地利)太空研究所(IWF)操作的Graz SLR站。这些发展的一般动机是证明和验证实时空间碎片TLEI,以提高SLR传感器的检测效率,并为获得的曲目提供敏感分析。使用获得的数据的轨道确定和天体动力分析是由瑞士伯尔尼大学天文学研究所使用自己的高级狮子座确定工具完成的。
在该框架内,欧盟 SST 联盟成员一方面负责整合欧盟成员国的现有资产(传感器和运营中心),另一方面负责设计中长期架构方案。为了按照最佳性价比方法确定升级和改进的优先顺序,同时避免不必要的重复,需要分析不同架构方案在预期观察太空物体的能力方面的性能,并确定和预测它们的轨道以支持其服务(避免碰撞、再入分析、碎片分析)。本文提出的方法具有通用性和灵活性,足以纳入可能在欧盟空间法规框架内加入欧盟 SST 伙伴关系的其他成员国的资产 [2]。
摘要 - 量子电路或ZX-微积分(例如,已成功地)代表作用于有限数量的量子数的量子计算。同时,在经典环境(笛卡尔数据类型)中,已将延迟轨迹用作表示流中有限记忆计算的图形方法。我们合并了这两种方法,并描述了一种通用结构,该结构将任何图形语言扩展到了有限记忆计算的图形语言。为了处理诸如ZX-Calculus之类的案例,该案例是针对后选择后的量子力学完成的,我们将延迟的痕量形式主义扩展到了因果案例之外,从而确定了流媒体变形金刚的因果关系的概念。我们设计了基于状态形态序列的流语义,并在某些假设下显示了普遍性和完整性结果。最后,我们研究了框架的链接与以前有关笛卡尔数据类型,信号流图和带有记忆的量子通道的链接。
课堂感知是一个重要且活跃的研究领域,具有巨大的教学改进潜力。作为专业观察员(当前最佳实践)的补充,自动化教学专业发展系统可以参加每节课并捕捉所有在场人员的细微细节。课堂注视行为是捕捉的一个特别有价值的方面。对于学生来说,某些注视模式已被证明与对材料的兴趣相关,而对于教师来说,以学生为中心的注视模式已被证明可以提高可接近性和即时性。不幸的是,之前的课堂注视传感系统的准确性有限,通常需要专门的外部或佩戴传感器。在这项工作中,我们开发了一种新的计算机视觉驱动系统,该系统为教室的 3D“数字孪生”提供支持,并实现全班 6DOF 头部注视矢量估计,而无需对任何在场人员进行测量。我们描述了我们的开源实现,以及受控研究和现实世界课堂部署的结果。
飞翼无人机的开发是一个反复的过程,其中考虑和分析了各个领域。飞翼无人机的机身采用 3D 打印,以便快速制作原型和重新配置,以便在短时间内测试不同的有效载荷配置。机翼和翼梢小翼由高密度泡沫制成,以保持重量并提供足够的耐用性(图 72)。初始翼型测试首先在 xflr5 软件(第 4 章:翼型选择)中利用计算流体动力学 (CFD) 进行,然后在 Solidworks(第 5 章:翼型分析)中进一步分析。经过分析,选择 Eppler 344 作为根翼型,Eppler 325 作为翼梢翼型。翼梢小翼是 GOE 330 翼型。利用 Solid Works 中的 CFD(第 8 章:最终飞机设计)对最终模型进行了分析,发现足以满足要求。通过在肯尼索州立大学亚音速风洞中测试比例模型(第 10 章:风洞测试),确认了 CFD 结果。这些测试的结果证实了通过 CFD 获得的结果。
最近,针对性的纳米壳的设计用于癌症化学疗法提供了另一种方法。一方面可以通过使用药物包裹的纳米颗粒来拉长血液循环时间并改善肿瘤药物内疏水性药物的生物利用度。另一方面,它可以通过将药物封装的纳米颗粒与靶向配体连接在一起,从而促进肿瘤药物的递送。5,6 These nanovehicles are o en made from macromo- lecular materials such as poly(lactide- co -glycolide) (PLGA), chi- tosan and poly-hydroxyethyl methacrylate/stearic acid, forming dendrimer, liposomes, 7,8 polymers 9 and inorganic nano- particles.10中的壳聚糖(CS)是通过脱乙酰化获得的阳离子自然多糖,是地球上第二大最丰富的生物聚合物损失。11,12 Cs也被称为有希望的生物材料,因为它的生物降解性,无毒性,生物相容性和免疫性。13 - 15但是,CS的水分溶解度差会限制其在药物输送中的应用。16在我们先前的研究中,低分子量的两亲性寡核酸壳可自我组装成水中的纳米细胞,已合成
摘要 - 手动跟踪是计算机图形和人机交互应用程序的重要组成部分。使用RGB摄像机没有特定的硬件和SENS(例如,深度摄像机)允许为大量设备和平台开发解决方案。尽管提出了各种方法,但由于阻塞,复杂的背景以及各种手势和手势,单个RGB摄像机的手跟踪仍然是一个具有挑战性的研究领域。我们提出了一个移动应用程序,用于从智能手机摄像机捕获的RGB图像中进行2D手跟踪。图像是由深层神经网络处理的,并经过修改,以解决此任务并在移动设备上运行,以寻找性能和计算时间之间的折衷方案。网络输出用于显示用户手上的2D骨架。我们在几种情况下测试了我们的系统,显示了交互式手动跟踪水平,并在变化的亮度和背景和小遮挡的情况下取得了令人鼓舞的结果。索引术语 - 深度学习,人类计算机互动,图像处理,手跟踪
摘要:在航空电子设备中,飞行员使用头盔显示器 (HMD) 在护目镜上显示外部环境的同步视图和与飞机相关的重要参数。为了完美同步护目镜上的视图,必须同步外部环境的坐标以及飞行员头部运动的坐标。为了确定飞行员头部运动的坐标,称为头部跟踪的过程起着重要作用。头部跟踪可以使用不同的跟踪技术来执行,例如光学跟踪、磁跟踪或惯性跟踪。在本文中,六自由度 (6-DoF) 磁运动跟踪装置 (Polhemus Patriot TM ) 用于在模拟器床上实时获取飞行员头部运动的坐标。在跟踪器获取过程中,由于铁磁性引起的磁场干扰,数据可能会丢失。为此,我们采用自修复神经模型 (SHNM) 来预测缺失数据。用于恢复的数据有 5200 个头部运动的 6-DoF 样本。SHNM 可实现超过 85% 的准确率来预测三组不同的缺失数据。将所提模型预测数据的准确率与反向传播神经网络 (BPNN) 模型进行了比较,结果发现 SHNM 模型的准确率优于 BPNN 模型
摘要。在航空电子设备中,飞行员使用头盔显示器 (HMD) 在护目镜上显示外部环境的同步视图和与飞机相关的重要参数。为了完美同步护目镜上的视图,必须同步外部环境的坐标以及飞行员头部运动的坐标。为了定位飞行员头部运动的坐标,称为头部跟踪的过程起着重要作用。头部跟踪可以使用不同的跟踪技术执行,例如光学跟踪、磁跟踪或惯性跟踪。在本文中,六自由度 (6-DoF) 磁运动跟踪装置 (Polhemus Patriot TM ) 用于在模拟器床上实时获取飞行员头部运动的坐标。在跟踪器采集过程中,由于铁磁性引起的磁场干扰,数据可能会丢失。为此,采用自修复神经模型 (SHNM) 来预测丢失的数据。用于恢复的数据有 5200 个 6-DoF 头部运动样本。SHNM 对三组不同的缺失数据的预测准确率超过 85%。将所提模型预测数据的准确率与反向传播神经网络 (BPNN) 模型进行了比较,结果发现 SHNM 模型的准确率优于 BPNN 模型
摘要:本文介绍了一种在并非所有状态都可用的情况下针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。