摘要。光学元面具有无与伦比的灵活性,可以通过下波长的空间分辨率操纵光场。将元面耦合到具有强光学非线性的材料可能允许超快时空光场调制。但是,到目前为止所证明的大多数元整口是线性设备。在这里,我们在实验上证明了同时使用单层等离子式肩面与纤维激光腔中的Epsilon-Near-Zero(ENZ)材料强耦合。虽然元表面的几何阶段被用来将激光器的横向模式从高斯束转换为带有轨道角动量的涡旋束,但通过Q -Switching过程,ENZ材料的巨大非线性可饱和吸收使脉冲激光产生。在激光腔中直接整合时空跨表面可能为开发具有量身定制的空间和时间剖面的微型化激光源铺平了道路,这对于多种应用来说是有用的,例如超级分辨率成像,高密度光学存储,高密度光学储存以及三维激光射击光刻。
摘要 — 这项工作涉及元宇宙互操作性。这是一个热门话题,因为过去几年推出了 240 多个元宇宙,但仅仅是可互操作的。现有的工作仅关注特定问题,例如不同元宇宙中的资产交换和对象可视化,但忽略了整体情况。此外,现有的资产交换协议非常耗时,难以承受高频元宇宙交易。为了解决这些问题,我们首先引入了一个分层的元宇宙互操作性框架,该框架全面考虑了可互操作的网络世界、兼容的交互机制和一致的物理基础设施。此外,我们提出了一种基于密钥交换和智能合约的新型跨区块链资产交换协议。所提出的协议是安全的,并将时间开销从线性降低到常数。
metasurfaces由于使用定期布置的纳米结构,可以随意调节电磁波,因此为下一代光学设备打开了通往下一代光学设备的门。然而,元时间通常具有固定的纳米结构几何形状的静态光学响应,这通过替换常规的光学组件来实施向技术的过渡带来挑战。为了解决此问题,液晶(LCS)已被积极地用于使用可调节的双折射物实时设计可调的跨面。在这里,我们回顾了有关LC可调式元面的最新研究,这些研究被归类为波前调整和光谱调整。与对可调式跨面的众多评论相比,该评论深入探讨了LC集成的元整日的最新发展。在这篇综述结束时,我们简要介绍了有关LC驱动的元信息的最新研究趋势,并提出了改善LCS的进一步说明。我们希望这篇评论能够加速新的和创新的LC-POW设备的开发。
metasurfaces由于使用定期布置的纳米结构,可以随意调节电磁波,因此为下一代光学设备打开了通往下一代光学设备的门。然而,元曲面通常具有固定几何形状的纳米结构的静态响应,这通过替换常规的光学组件来实施向技术的过渡带来挑战。为了解决此问题,液晶(LCS)已被积极地用于使用可调节的双折射物实时设计可调的跨面。在这里,我们回顾了有关LC可调式元面的最新研究,这些研究被归类为波前调整和光谱调整。与对可调式跨面的众多评论相比,该评论深入探讨了LC集成的元整日的最新发展。在这篇综述结束时,我们简要介绍了有关LC驱动的元信息的最新研究趋势,并提出了改善LCS的进一步说明。我们希望这篇评论能够加快新型和创新的LC设备的开发。
摘要:在电缆中的绝缘层的交联聚乙烯(XLPE)的广泛使用可能归因于其出色的机械和介电性能。为了定量评估热老化后XLPE的绝缘状态,建立了加速的热老化实验平台。极化和去极化电流(PDC)以及在不同老化持续时间下XLPE绝缘裂纹时的伸长率。XLPE绝缘状态取决于断裂保留率(ER%)的伸长率。基于扩展的Debye模型,本文提出了稳定的松弛电荷数量和0.1 Hz的耗散因子,以评估XLPE的绝缘状态。结果表明,XLPE绝缘的ER%随着衰老程度的增长而降低。XLPE绝缘的极化和去极化电流将随着热老化而明显增加。电导率和陷阱水平密度也将增加。扩展Debye模型的分支数量增加,并出现新的极化类型。在本文提出的0.1 Hz处的稳定的松弛电荷量和耗散因子与XLPE绝缘的ER%具有良好的拟合关系,可以有效地评估XLPE绝缘的热老化状态。
出生与三岁之间的时期对于儿童发育至关重要。在此期间,发生了80%的大脑发育,并确定了儿童生活中终身健康,福祉和成功的基础。尽管父母是孩子的第一个也是最重要的老师,但在这一关键年份,家庭通常需要早期护理和教育(ECE)提供者的额外支持。支持为婴儿和幼儿提供服务的家庭托儿所和中心护理的启动成本和设施发展费用。
• 在各种各样的岩土工程条件下(均质或混合面、破碎岩体、软土地基等),以及在所有钻孔方法(传统隧道掘进、开放式盾构、土压平衡或泥水盾构)都可能发生面不稳定, • 在地下,所涉及的体积可以从几立方分米(局部不稳定)到几百立方米(影响整个前缘甚至覆盖层)的整体不稳定, • 机制的形状取决于地面的性质:由岩石中预先存在的不连续性界定的块体、粉状地面中靠近面局部的机制(向地面逐渐演化)和粘性粘土地面中体积更大的机制, • 因部分或不当控制面稳定性而引起的不稳定性可能会在时间和空间上延迟影响到地面, • 面不稳定的后果变化很大,从“几乎可以忽略不计”到“非常严重”(延迟可达几个月)不等个月)或巨大的额外成本(高达数百万欧元),以及人员伤亡(因为地下工人面临风险)。
