纯自营模式、纯聚合经营模式、自营+聚合经营模式是网约车平台常用的三种经营模式,我们利用分析模型对这三种经营模式进行研究,并给出平台的最优经营模式决策。研究表明,司机异质性比例、自营模式下平台成本、聚合模式下平台收到的加盟费以及平台原有用户的不满意度对平台经营模式的选择起着关键作用。当聚合模式下的加盟费与自营模式下的平台成本差额未能对平台利润产生正反馈时,平台应选择纯自营模式。当乘客对平台服务质量异质性较为敏感且能保证用户粘性时,平台应选择纯聚合经营模式。当能保证用户粘性且自营模式下平台成本可控时,平台应选择自营+聚合经营模式。
A. 曼谷私人交通的经济成本 1. 泰国快速的城市化和经济发展伴随着汽车使用率的大幅提高。泰国首都曼谷的汽车数量几乎与居民数量相当,对汽车的需求持续激增。然而,曼谷私人车辆运营的成本并不能反映真实的经济成本,因为个人司机会产生许多负面外部效应——即司机给第三方带来的成本并没有准确反映在车辆运营的市场价格中。 2. 私人交通的负面外部效应:温室气体排放。交通运输通常会对温室气体排放产生重大影响,占泰国 2022 年二氧化碳年排放量的 33% 左右。 1 由于没有实际的碳价,燃料成本无法反映排放对气候变化的影响。泰国是一个极易受到气候变化影响的国家,其目标是到 2030 年将其排放量与一切照旧情景相比减少 20%,到 2050 年实现碳中和,并在 2065 年或之前实现净零排放。2 要实现这一目标需要大幅减少排放,包括减少交通运输部门的排放量 4100 万吨二氧化碳当量。3 3. 私人交通的负外部性:交通拥堵。超出道路容量的个人汽车使用也会对其他驾驶员产生负外部性,因为驾驶员共同造成了交通拥堵。据估计,曼谷人高峰时段平均每天要花 64 分钟堵在路上。与畅通无阻的交通状况相比,早上的出行时间要长 91%,下午的出行时间要长 118%。驾驶员在道路上闲置时间造成的经济成本估计为每年 110 亿泰铢。 4 2022 年,平均驾驶员花费 192 小时驾驶,其中 93 小时(48%)可归因于交通拥堵。每年平均花费在燃料上的 B14,703 中,B3,899 可归因于交通拥堵造成的额外燃料成本。5
亚洲清洁空气组织是一个国际非政府组织,领导着改善亚洲空气质量、建设更健康、更宜居城市的地区使命。我们与合作伙伴合作,通过建设能力、倡导有效和适当的政策和做法以及向利益相关者通报空气污染和气候变化的影响,减少亚洲的空气污染和温室气体排放。我们的目标是通过一系列创新政策和计划减少亚洲 1000 多个城市的空气污染和温室气体排放,这些政策和计划涵盖空气质量、交通和工业排放以及能源使用。我们与能源、环境、卫生和交通部、城市、私营部门、发展机构、学术界和民间社会合作,在空气质量和气候变化、可持续交通(低排放城市发展、清洁燃料和车辆、绿色货运和物流)和清洁空气认证城市方面提供领导力和技术知识。亚洲清洁空气组织总部位于马尼拉,在北京和德里设有办事处。
尽管托马斯·佩斯凯于 4 月 22 日作为阿尔法任务的一部分发射升空,但人类面临的最大挑战之一仍然比国际空间站更远,距离地球 40 万公里:建立月球基地。但是在能够长期定居月球以开发其资源或为未来更远的探索任务提供后勤支持之前,必须进行探索工作。使用自主机器人系统可以从太空绘制危险或难以到达区域的地图,然后最终部署太空港或人类居住地等基础设施。面对这一探索挑战,图卢兹 ISAE-SUPAERO 的空间先进概念实验室 (SaCLaB) 和该学院的一个学生团队正在开发协作探测车和无人机 (CoRoDro) 项目,以研究空间机器人系统的导航和自主操作。这项科学研究是欧洲航天局 (ESA) 支持的 IGLUNA* 2021 计划中在 8 个不同国家选出的 12 个大学技术项目之一。CoRoDro 的概念是开发无人机和探测车之间的交互。具体来说,无人机定位并绘制其环境,并将其传输给探测车,以便后者对其进行分析并选择最相关的点进行移动和进行科学实验。借助无人机的制图,探测车能够选择最短路径并确定可能的障碍物,从而缩短每次探索任务的时间。该项目的目标是了解在多大程度上可以信任机器人的工作,让它们完全自主地移动和做出决策,并确定在多大程度上人类可以做出决策,尤其是对不可预见的事件做出反应。从月球设施的角度来看,机器人将进行干预以支持关键活动。 CoRoDro 项目允许获取知识并在真实尺寸上测试有关未来空间站的服务、月球资源的开发或对机组人员和机器人之间在关键和危险活动中的协作的分析的多种理论。联系方式:leila.c@oxygen-rp.com
• 日产 LEAF 每天可产生约 12 千瓦时的电力。 • 日产 LEAF B4 中储存的电力可供家庭使用约 3 天,而 LEAF e+ B6 可维持约 4 天(当外部电源中断时)。 • V2H 可用于 2020 年 7 月在全球推出的日产 ARIYA。 • 作为日产能源份额的一部分,V2H 正在帮助解决环境、防灾和减灾问题。 • 通过 V2H,日产 LEAF 在电价低时(夜间)充电。 • 当电价高时(白天家里每个人都使用电器时),日产 LEAF 中储存的电力会供应给家庭。这允许在电价较低时使用可再生能源。
电动汽车低碳充电的选项包括从现有的电网网络充电使用PV或其他可持续电源,从当地PV发电的专用充电点充电,或直接和独立地使用车载PV(PV供电车辆)。为了促进减少运输部门的CO 2排放并增强PV市场的扩展,IEA PVPS任务17的目的是阐明PV利用在运输中的潜力,并建议如何实现这些概念。任务17的范围包括各种PV驱动的车辆,例如乘用车,轻型商用车,重型车辆和其他车辆,以及用于电气系统和基础设施的PV应用,例如使用PV,电池和其他电力管理系统充电基础设施。
机器人自主战斗解决方案(RAS)的一部分,具有全地形机动性的ROOK高移动性6x6无人接地车辆(UGV)适合在极端条件下的近距离操作。旨在携带重型有效载荷,多功能机器人UGV可以执行各种各样的城市战争,营操作和边境保护任务,同时提高前线有效性和生存能力。
Transgrid 还指出,目前正在实施 ISF 成本回收方法,并希望讨论一些潜在的意外后果。尽管 TNSP 每年能够收回预测成本,但必须管理大量不稳定的现金流(估计每年数亿美元),这可能会对融资能力状况产生重大影响。1 这一问题是由实际系统强度支付可能因市场条件的变化而每月发生重大波动所致。与预测成本的每月固定回收(通过年度输电定价获得)相比,这种波动将导致每月回收金额大幅超过或低于预期。如果回收金额大幅低于预期,即系统强度支付在一个月或一个季度内大幅高于预测金额,这将对 Transgrid 的信用指标和债务契约要求产生重大影响。
单色仪是一种高品质的干涉滤光片,放置在视野中时,可产生彩色光应力图案的单色光图像。单色光在光应力测试中有两个主要应用:(1) 观察高应力梯度区域中的应力带(在白光下,彩色图案在极高应力水平下会变暗),以及 (2) 光应力图案的黑白摄影。单色仪可以手持,也可以安装在特殊外壳中,以便连接到摄像机镜头。
将基因组对准共同坐标是pangenome分析和构建的核心,但在计算上也很昂贵。多序列最大唯一匹配(多-MUMS)是用于核心基因组比对的指南,有助于构架和解决多重比对问题。我们介绍了Mumemto,该工具可在大型pangenomes中使用多个粉刺和其他匹配类型。mumemto al-lows用于可视化同义,揭示了异常的组件和脚手架,以及高光pangenome保守和结构变化。Mumemto在25.7小时内使用320个人类基因组组件(960GB)计算多个Mums,并在几分钟内使用800 GB的记忆和数百多个真菌基因组组件计算。mumemto在C ++和Python中实现,并在https:// github上可用。com/vikshiv/mumemto。