心因性非癫痫事件 (PNEE),有时称为心因性非癫痫发作 (PNES),是类似于癫痫发作的行为发作(“事件”)。在短时间内,患者无法控制自己的身体移动、感知事物或思考方式。情绪压力或创伤可能会导致 PNEE,而大脑中的电气问题则会导致癫痫发作。
说明:步骤1:从快速讨论开始•心脏做什么?•为什么心脏在运动后会更多?•血液如何通过我们的身体移动?说明可以通过计算一分钟内的节拍数来衡量心跳。步骤2:教孩子们如何找到自己的脉搏。他们可以感觉到它:•在手腕上(径向脉冲)•在颈部(颈动脉脉冲)练习15秒钟,然后乘以4次,以计算每分钟的节拍(bpm)。步骤3:测量静息心率•安静地坐一分钟以确保静息心率。•测量并记录BPM。步骤4:活动时间:让心跳加速!•选择一个简单的活动,例如跳跃插孔,慢跑到位或跳舞1-2分钟。•活动后立即测量心率并记录BPM。步骤5:冷却•活动后安静地静置2分钟,然后再次测量心率。这将帮助孩子们观察锻炼后心脏的慢节奏。步骤6:重复和比较•尝试不同的活动,例如步行或跳过,并比较心率变化。
脑机接口 (BCI) 是一种通信系统,它从大脑活动获取输入并将其转换为外部设备的输出命令,而无需用户进行身体移动 (Wolpaw 等人,2002)。因此,BCI 可以帮助运动障碍患者通过各种控制范式重新获得与环境沟通和互动的能力。收集用户的大脑活动的方法有很多种,其中脑电图 (EEG) 最受欢迎,因为它是非侵入性的并且具有很高的时间分辨率 (Abiri 等人,2019)。根据从大脑中提取的 EEG 成分,BCI 系统可分为三大范式:P300、稳态视觉诱发电位 (SSVEP) 和运动意象 (Abiri 等人,2019)。 P300 范式依赖于事件相关电位 (ERP) 形式的正偏转,该正偏转在遇到奇异范式中的预期刺激后约 300 毫秒引发 (Mat-tout 等人,2015)。因此,通过比较在一系列刺激呈现中诱发的事件相关电位,P300 BCI 可以识别用户的目标选择。与其他范式相比,P300 范式需要的用户培训较少 (Guger 等人,2009),使其成为设计 BCI 控制的交互式环境的有前途的工具 (Fazel-Rezai 等人,2012)。BCI 控制的智能家居已经使用虚拟现实 (VR) 模拟和物理
非侵入性大脑 - 计算机界面(BCIS)通常使用电脑造影术(EEG)为单独使用个人的NEU Rodication Active访问增强和替代(AAC)通信设备提供手段,而无需进行身体互动(BCI-AAC;例如,J。S。S. S. S. S. S. S. S. S. S. S. S. S. S. S.,J。S。S. Brumberg等人,2018年)。通过脑电图的这种联系规定了个人拥有可靠的身体移动形式来访问交流的要求。目前,尚无临床路径方式(评估,选择,提供和保险资金)用于BCI-AAC设备的临床使用,尽管有些设备有些人开始逐渐获得COM(例如,Intendix Speller,G.TEC Medical Engineering),突显了涉及BCI-AAC涉及临床临床实践的需求。然而,尽管正在进行的研究重点是改善BCI-AAC对辅助技术设备的访问(例如,Gosmanova等人,2017年; Thompson等,2014; Zickler等,2011),BCI-AAC Paradigms仍然很大程度上利用了定制的软件和显示用于ET范围的靶向靶向神经系统识别。定制的BCI-AAC软件与现有的AAC设备和范例之间缺乏一致性可能会阻碍AAC干预在整个疾病过程中的联系,从而增加了Indi Vidual的情感斗争和学习需求,并要求通过学习多种形式的AAC(Blain-Moraes et al。 2006)。例如,随着运动障碍的进度,可能需要一个人在过渡到BCI-AAC之前使用眼睛凝视或开关访问在市售的AAC系统中进行束缚和导航(Pitt,Brumberg,Pitt等,2019)。
引言我们将Motricity视为中枢神经系统产生肌肉收缩的能力。它也被定义为身体移动或产生运动的能力。在体育锻炼和运动科学领域中,Motricity是指对人类运动的研究,其特征和意义。作为一门学科研究人类运动及其动力学和运动学特征。在一个信息和通信技术明显破坏我们的习惯,并可能鼓励久坐的生活方式(以及低认知刺激)的世界中,重要的是要考虑新的范式,这些新范式可以证明其他移动和更有效的方式。运动,体育活动和执行功能之间的关系是近年来在不同领域发展最多的研究线之一。在进行的文献综述中,很明显,在运动场上,体育锻炼是防止老年痴呆症,阿尔茨海默氏病和抑郁症的最佳保护者之一。我们的身体以及我们的大脑都是为了移动而创造的。运动增加了神经营养蛋白的产生,神经营养蛋白是一种蛋白质,可帮助我们产生更多的神经元,帮助我们拥有健康柔软的大脑。这就是为什么每当我们想学习新知识时,我们的大脑都必须自我修改并创建新的结构,正如圣地亚哥·拉蒙(SantiagoRamónY Cajal)在20世纪初指出的那样。然而,出于不同的原因,这是认知功能,最重要的是,这项学习的成功。在学习新活动的过程中,镜像神经元的作用(Rizzolatti,1996)和模仿是一种基本支柱,因为基于观察到的模型创建并指导了新的突触途径。一方面,与注意通道有关的正确观察结果,另一方面,主动聆听是基本的,以便能够计划后验响应。精神运动发展与通过运动动作获得知识的获取有关,该动作允许探索环境和获得相关信息以形成思想。在神经精神病学领域,许多调查证明了运动障碍与精神障碍之间的关系。大脑和动物成为学习过程中必不可少的二项式。有意识和自愿运动和语言等是将我们区分为物种的特征。由于身体和运动,作为教育行动的轴心,我们的大脑发展了。人类的互动和对环境的刺激会引起个人的新神经联系。作为Pinzón等人。(2020)指出:“动物的细胞和分子水平上的大量行为研究显示出对环境刺激的响应的显着影响,这意味着通过在复杂和新颖的环境中居住的感觉,认知和运动刺激的水平增强”。最近的研究一致认为,在人类进化的敏感阶段,早期和丰富的刺激将促进运动和认知成熟。我们审查了引用神经运动活动及其与大脑发育关系的文章和作品,以及体育活动对神经营养蛋白和新神经元突触产生的影响。To do so, we consulted the following databases Analytical Abstracts, ASSIA, Biblioteca Virtual en Salud (BVS), Web of Science, CINAHL, Cochrane, CSIC, Cuadernos de Pedagogía, CUIDEN, Dialnet, ERIC, Erihplus, JSTOR, MEDES, Pascal-Francis, Proquest central, Psicodoc, Psycinfo, PubMed,Ulrich's。