DNA甲基化和DNA甲基转移酶(MTases) - 将甲基化标记引入DNA的酶已经研究了近70年。在本章中,我们回顾了DNA甲基化场中的关键发展,这些发展导致我们目前对DNA MTase的结构和机制的理解。我们讨论了DNA甲基化的基本生物学作用,包括发现DNA甲基化,细菌和真核MTases的克隆和序列分析以及其结构,机制,调节和分子进化的阐明。我们描述了对DNA甲基化在发育和疾病中的作用的不断发展的观点,对DNA甲基化基因组的分析的发明以及DNA MTases的生化鉴定和TET酶的生化鉴定,这与
肝癌在恶性肿瘤中发病率居第六位,死亡率居第三位,癌症相关死亡居第四位(1)。肝细胞癌(HCC)占原发性肝癌的75%–85%(2)。2020年HCC的发病率高于其他恶性肿瘤,世界卫生组织(WHO)估计,到2030年将有超过100万人死于HCC(3)。HCC具有高度异质性,病因复杂。该肿瘤的主要原因包括代谢紊乱、慢性肝炎病毒感染、吸烟和过量饮酒(4,5)。由于HCC早期临床症状不明显,发病机制不明,患者诊断时通常已是晚期HCC或已有远处转移,预后不佳(6),因此HCC的治疗具有挑战性。
糖尿病是通常会感染所有年轻人和老年人的慢性疾病之一。目前尚无特殊药物可以治愈糖尿病。可以使用继续开发的某些酶疗法对糖尿病进行适当治疗。允许治疗糖尿病患者的一步是抑制二十二甘油酰基转移酶-1的生长(DGAT1)。在使用定量结构活动关系(QSAR)方法的硅中开发中,该方法通常用于预测尚未测试的化合物的生物学活性。本研究旨在使用二二酰甘油酰基转移酶-1化合物作为糖尿病生长的抑制剂来构建QSAR模型。使用粒子群优化(PSO)特征选择模型和支持矢量机(SVM)的预测方法,将在二二十二酰甘油酰基转移酶-1化合物中产生主要的描述符的组合建议,该化合物可用于抗糖尿病的发展。所使用的数据集是228个数据,其中包含有关二二酰甘油酰基转移酶-1种化合物的化合物活动的信息,多达1444个功能。使用的描述符信息是一个特征列,其偏差高于0.5。通过多项式内核获得了PSO选择的最佳结果,值为𝑅20.629,以及通过实施RBF模型获得的最佳预测结果,在每个内部验证𝑅2和外部验证2中获得得分,值为75%和67.2%。
脓毒症综合征由细胞和循环调节因子的复杂网络介导 (1, 2)。在急性期,炎症细胞因子(包括 TNF α、IL-1 β 和 IL-6)被释放到循环中,在那里它们介导发烧、白细胞增多、器官衰竭和分布性休克 (3, 4)。与促炎期相伴的是强大的反调节抗炎反应,它抑制炎症细胞因子的产生并抑制先天免疫功能 (5)。该免疫抑制期的主要介质包括 IL-1ra、IL-4 和 IL-10,而 TNF α 和其他促炎介质的基因表达受到抑制 (6, 7)。一些患者表现出称为持续性炎症、免疫抑制分解代谢综合征 (PICS) 的特征性矛盾症状群 (6, 8)。其他患者会出现长期的免疫抑制期,其特征是这些抗炎细胞因子的持续表达、促炎细胞因子的抑制和严重的先天免疫功能障碍(9, 10)。
癌细胞通常表现出严格调控的代谢可塑性和表观遗传重塑程序,以满足不受控制的细胞增殖的需求。代谢-表观遗传轴最近成为致癌作用中越来越热门的话题,并为创新和个性化的癌症治疗策略提供了新途径。烟酰胺 N -甲基转移酶 (NNMT) 是一种参与控制甲基化潜力的代谢酶,影响 DNA 和组蛋白的表观遗传修饰。NNMT 过表达已在各种实体癌组织甚至体液(包括血清、尿液和唾液)中得到描述。此外,越来越多的证据表明,NNMT 敲低可显着降低肿瘤发生和化学抗性能力。最重要的是,天然 NNMT 抑制剂芫花定可以逆转肺癌细胞对表皮生长因子受体酪氨酸激酶抑制剂的耐药性。在这篇综述中,我们评估了 NNMT 作为有效抗癌治疗的诊断生物标志物和分子靶点的可能性。我们还揭示了 NNMT 如何影响表观遗传学的确切机制以及开发更有效和更有选择性的抑制剂。
改善神经发育障碍的症状和认知缺陷是当前医学的关键挑战。引起了很多兴趣的神经发育障碍之一是注意力缺陷多动障碍(ADHD),这与影响日常生活和学术成就的不集中和多动症相关,并在执行功能和学习中造成了进一步的困难(Barkley,1997)。尽管儿童中的流行率很高,但最近的工作强调了多动症一直持续到成年(Sayal,Prasad,Daley,Ford,&Coghill,2017年)。非侵入性脑刺激技术已越来越有吸引力,作为一种有前途的工具,在健康和临床种群中显示出神经调节和行为影响,几乎没有不良反应(Reed&Cohen Kadosh,2018)。在这个问题中,Breitling等人的一项研究。(2020)研究了两种类型的经颅直流刺激(TDC)对右下额回的影响对ADHD儿童和青少年的工作记忆过程和表现的影响。
摘要 迄今为止,尚无针对先天性肌病患者的治疗方法,这种肌肉疾病会导致患者的生活质量低下。在约 30% 的病例中,先天性肌病患者携带瑞安诺丁受体 1 (RYR1) 基因的显性或隐性突变;隐性 RYR1 突变伴随着骨骼肌中 RyR1 表达和含量的降低,并与纤维营养不良和肌肉无力有关。重要的是,隐性 RYR1 突变患者的肌肉表现出 II 类组蛋白去乙酰化酶和 DNA 基因组甲基化的含量增加。我们最近创建了一个 p.Q1970fsX16+ p.A4329D RyR1 突变的小鼠模型,该突变与患有隐性 RyR1 相关多微核病的严重儿童携带的突变同源。 RyR1 突变小鼠的表型重现了携带隐性 RYR1 突变的患者的临床表现的许多方面。我们用两种靶向 DNA 甲基化酶和 II 类组蛋白脱乙酰酶的药物组合治疗复合杂合小鼠。在这里,我们表明,用靶向表观遗传酶的药物治疗突变小鼠可改善肌肉强度、RyR1 蛋白质含量和肌肉超微结构。这项研究为药物治疗与隐性 RYR1 突变相关的先天性肌病患者提供了概念证明。
1简介面部检测是对象识别的子集,这是计算机科学众多研究领域之一。在当天同样,它被认为是软件工程师和执法人员中的一个非常重要的问题,并且知道如何改善犯罪调查和预防犯罪事故。面部检测一直是一个主要的学术主题[1]。这是一种用于检测人脸的计算机视觉方法。计算机视觉已经走了很长一段路,现在有许多可以认为可以实现的研究项目,其中一些被纳入了一个被称为“ OpenCV”的开源计算机视觉项目中。“创建的开源计算机视觉和机器学习软件库,该库为计算机视觉应用提供标准基础,并加速商业产品中的机器感知,” OpenCV网站[2]表示。
在本研究中,我们观察到了 NMNAT1 在短暂性脑缺血和再灌注模型中保护作用的新机制。小鼠脑缺血后,梗塞周围皮质和微血管中的 NMNAT1 水平升高。鼻腔内注射 rh-NMNAT1 可改善缺血性中风小鼠的梗塞体积并改善神经功能缺损。同时,rh-NMNAT1 给药可减轻脑缺血引起的 BBB 损伤。该研究的新颖性和重要发现如下:观察到的 rh-NMNAT1 的有益作用可能归因于