摘要 从细菌到人类,许多生物体都存在砷解毒系统。在之前的研究中,我们在嗜热菌 Thermus thermophilus HB27 ( Tt SmtB ) 中发现了一个砷反应转录调节因子。在这里,我们更详细地描述了嗜热菌的砷抗性系统。我们采用基于 Tt SmtB 的下拉分析,对用砷酸盐和亚砷酸盐处理的培养物的蛋白质提取物进行研究,以获得 S -腺苷酸-L-蛋氨酸 (SAM) 依赖的亚砷酸盐甲基转移酶 ( Tt ArsM )。进行了体内和体外分析,以阐明砷抗性网络的这一新组成部分及其特殊的催化机制。在大肠杆菌中异源表达 TtarsM 可在中温温度下实现亚砷酸盐解毒。尽管 Tt ArsM 不含有典型的亚砷酸盐结合位点,但纯化的蛋白质确实会催化 SAM 依赖性的亚砷酸盐甲基化,形成单甲基亚砷酸盐 (MMA) 和二甲基亚砷酸盐 (DMA)。此外,体外分析证实了 Tt ArsM 和 Tt SmtB 之间的独特相互作用。接下来,开发了一种高效的基于 ThermoCas9 的基因组编辑工具,以删除嗜热菌基因组上的 Tt ArsM 编码基因,并确认其参与亚砷酸盐解毒系统。最后,用编码稳定化黄色荧光蛋白 (sYFP) 的基因取代嗜热菌 D TtarsM 基因组中的 TtarsX ef flux 泵基因,以创建灵敏的基于基因组的生物报告系统,用于检测砷离子。
3.09.1 简介 204 3.09.1.1 Leloir 与非 Leloir GT 及其供体底物 204 3.09.1.2 基于序列的 CAZy 家族和 GT 的结构分类 205 3.09.1.3 GT 的机制 205 3.09.1.3.1 反转 GT 机制 205 3.09.1.3.2 保留 GT 机制 206 3.09.2 GT 活性的抑制 208 3.09.2.1 GT 抑制剂的类型 208 3.09.2.1.1 GT 底物类似物和过渡态类似物 208 3.09.2.1.2 GT 的糖基化抑制剂 211 3.09.2.1.3 天然产物作为 GT 抑制剂 212 3.09.2.1.4 结构多样的合成小分子作为 GT 抑制剂 214 3.09.2.2 识别 GT 抑制剂的高通量筛选策略 215 3.09.2.2.1 通过核苷酸释放测量 GT 活性的偶联酶测定 215 3.09.2.2.2 基于碳水化合物微阵列的 GT 测定 216 3.09.2.2.3 基于荧光偏振的 GT 测定 217 3.09.2.2.4 使用荧光团标记的糖供体直接荧光测定 GT 活性 219 3.09.2.2.5 糖苷酶依赖性荧光偶联 GT 测定 219 3.09.3 GT 活性工程 221 3.09.3.1 使用合理的蛋白质设计修改 GT 活性 221 3.09.3.1.1 GT 的定向诱变 221 3.09.3.1.2 域交换生成 GT 嵌合体 222 3.09.3.2 高通量筛选策略及其在发现和设计 GT 活性中的应用 225 3.09.3.2.1 用于天然产物 GT 定向进化的基于平板的荧光猝灭策略 225 3.09.3.2.2 通过 FACS 进行细胞内荧光捕获以筛选 GT 活性 225 3.09.3.2.3 在基于平板和颗粒的体外试验以及基于 FACS 的体内试验中利用聚糖结合蛋白筛选 GT 活性 227 3.09.4 结论 228 参考文献 228
全基因组关联研究(GWAS)已鉴定出113个影响发生连性脊椎炎(AS)风险的单核苷酸多态性(SNP),并且正在进行的GWAS研究可能会识别100 +新的风险基因座。由于以下挑战,将遗传发现向新型疾病生物学和治疗的翻译很难:(1)在确定与疾病相关SNP调控的因果基因时的困难,(2)(2)在确定相关细胞型的caus型基因的差异方面的困难(2)确定其功能(3),(3)(3)询问因果基因在疾病生物学中的功能作用。本评论将讨论最近的进展和未解决的问题,重点是这些挑战。此外,我们将回顾生物学的研究以及与IL-23/IL-17途径相关的药物的开发,该途径是由AS遗传学部分驱动的,并讨论从这些研究中可以从未来的AS-CYPAID基因的功能和翻译研究中学到的知识。
转录因子 NRF2 在保护细胞免受环境压力和维持细胞稳态方面起着关键作用。乙酰转移酶 p300 是 NRF2 转录复合物的已知组成部分,可促进其转录活性。在本研究中,我们描述了 p300 促进 NRF2 活性的一种新机制。p300 与 NRF2 发生物理相互作用并干扰 NRF2-KEAP1 复合物的形成。特别是,p300 增加了 NRF2 蛋白的丰度和稳定性,从而促进了 NRF2 的核定位。值得注意的是,p300 的乙酰转移酶活性对于 NRF2 的稳定作用是必不可少的。此外,过表达 p300 可保护 HEK293T 细胞免受氧化应激并提高其活力。总之,我们的研究揭示了 p300 与通过调节 NRF2 稳定性来控制 NRF2-KEAP1 信号传导之间的联系,这可能成为适应氧化应激的新型检查点。© 2020 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
此预印本的版权所有者于 2020 年 2 月 7 日发布此版本。;https://doi.org/10.1101/2020.02.06.936286 doi: bioRxiv preprint
在发育过程中,大鼠脑髓磷脂亚菌群中描述了含有含有神经酰胺半乳糖基转移酶的酶UDP-半乳糖糖羟基脂肪酸的定位和活性。其他脂质合成酶,例如脑硫磺硫酸光转移酶,UDP-葡萄糖 - 葡萄糖 - 陶瓷葡萄糖基转移酶和CDP-胆碱-1,2-二酰基甘油胆碱磷酸酶磷酸酶也已在肌蛋白亚纤维上和微晶片中进行比较。纯化的髓磷脂被异icnic蔗糖密度梯度离心分离。四个髓磷脂亚馏分分别在0.55 m-(浅绿色蛋白级分),0.75 m-(重膜蛋白级分)和0.85 m-核(膜馏分)和一个颗粒中,分离并纯化。在所有年龄段,在重肌蛋白馏分中发现了总髓磷脂蛋白的70-75%,而在轻膜林馏分中恢复了2-5%的蛋白质,而在膜分数中约为7-12%。大多数半乳糖基转移酶与重膜蛋白和膜分数有关。所研究的其他脂质合成酶似乎不与纯化的髓磷脂或髓磷脂亚菌群相关,而是在微体积 - 膜分数中富集。在发育过程中,当动物大约20天大然后下降时,微粒体半乳糖基转移酶的特异活性达到了最大值。相比之下,在重膜蛋白和膜级分中,半乳糖基转移酶的特异活性比16天大的动物中微粒体膜高3-4倍。酶在重绿色蛋白级分中的特定活性随着年龄的增长而急剧下降。对各个年龄段的重髓蛋白和髓磷脂亚折原的化学和酶学分析表明,膜级分所含的蛋白质与脂质有关,而不是重膜蛋白分数。与胆固醇相比,膜级分在磷脂中也富集,并含有2':3'-循环核苷酸3'-磷酸水解酶,而与重蛋白质和轻质蛋白质级别相比。膜馏分缺乏髓磷脂碱性蛋白和蛋白质蛋白,并富含高分子量蛋白。在髓鞘化刚刚开始的时候,半乳糖基转移酶在重膜蛋白和膜级分中的特定定位表明它可能在髓鞘化过程中起作用。