色差共焦技术使用白光源,光线通过具有高度色差的物镜。物镜的折射率将根据光的波长而变化。实际上,入射白光的每个单独波长将在距镜头的不同距离(不同高度)处重新聚焦。当测量样品在可能的高度范围内时,将聚焦单个单色点以形成图像。由于系统的共焦配置,只有聚焦的波长才会高效地通过空间滤波器,从而导致所有其他波长失焦。光谱分析是使用衍射光栅完成的。该技术将每个波长偏离不同的位置,截取一条 CCD 线,这反过来指示最大强度的位置并允许直接对应于 Z 高度位置。
运动系统 X 和 Y 光学分辨率 光学 光学 相机光学 照明 3D 光学 3D 测量原理 激光轮廓仪 激光轮廓仪 微观 3D 速度 1 (CM 2 /s) 2.4 0.5 应用相关 3D 传感器 XY 分辨率 (um) 5 2.5 250-350nm 3D 传感器 Z 重复性 (um) 5 0.4 0.3 0.5 最大元件高度 (mm) 软件离线程序生成程序调试环境 SPC 和报告
图 4.3:使用光学表面轮廓仪分析的实验性 RCF 轨迹轮廓 (a) 10 5 个周期的表面轨迹轮廓的 3D 视图 (b) 10 5 个周期的顶视图 (c) 不同的测试周期 ............................................................................................................................................................. 82
• Fives Cincinnati/Lund – Flightware 和轮廓仪 • Danobat – Profactor • MTorres – Airbus InFactory Solutions、Profactor • Electroimpact – Aligned Vision(777X 机翼) • Coriolis – Edixia • Coriolis – 通过 SuCoHS 项目在 NLR 的 Apodius • Electroimpact – 实时过程检测技术
我们开发了下一代机器人立体定位平台,用于小动物,结合了三维 (3D) 颅骨轮廓仪子系统和完整的六自由度 (6DOF) 机器人平台,以提高空间精度和手术速度。3D 颅骨轮廓仪基于结构照明,其中视频投影仪将一系列水平和垂直线图案投射到动物颅骨上,并由两个二维 (2D) 常规 CCD 相机捕捉,以基于几何三角测量重建精确的 3D 颅骨表面。使用重建的 3D 颅骨轮廓,可以使用基于 Stewart 设计的 6DOF 机器人平台引导和重新定位颅骨,以精确对准手术工具,以达到特定的大脑目标。使用机械测量技术对系统进行了评估,并使用琼脂脑模型演示了平台的精确瞄准。麻醉的单角沙鼠也用于该系统,通过使用玻璃移液器注射染料来瞄准梯形体 (MNTB) 的内侧核。切除的脑切片荧光成像证实了瞄准脑核的准确性。结果表明,这种新的立体定位系统可以提高神经科学研究中小规模脑部手术的准确性和速度,从而加速神经科学发现并降低实验动物的流失率。
采用该工艺已生产出多片复合板,每片包含5到10个间距,间距范围为0.5 μm到50 μm。对于每一问题,从板上剪下尺寸为9 mm x 9 mm的单个样品,并将其侧面安装在钢制支架上进行金相抛光。通常在抛光过程中,软材料的去除速度比硬材料快,但扫描隧道显微镜 (STM)、原子力显微镜 (AFM) 和触针轮廓仪的图像都显示,抛光后,SRM 的金线突出镍表面约 30 nm(图 3)。我们推测,热处理可能形成了硬质金镍合金,或者由于抛光中的化学机械效应,镍的去除速度比金的去除速度快。
• 物理冶金学、粉末冶金学(传统制造和增材制造)。• 金属生物材料(泡沫和复合材料)的生产及其表面处理。• 采用激光烧蚀法合成纳米材料(石墨烯衍生物(GO、rGO 和 rGO 凝胶)和金属/石墨烯混合结构),• 场效应晶体管生物传感器生产(乳腺癌检测),• 生物传感器的表面化学和功能化,• 微纳米制造- 洁净室技术实践经验(光刻、DRIE、湿法蚀刻、电子束沉积)。• 表征技术机械表征:通用机械测试设备,表面:AFM、XPS、表面轮廓仪,结构:XRD,光谱:IR 和 UV - 可见光谱、FTIR、拉曼,形态:SEM、TEM,电气表征:探针站,4 点测量。
通过该工艺已经生产出几种复合板,每种板包含 5 到 10 个间距,范围在 0.5 ixm 到 50 |xm 之间。对于每个问题,从板上剪下 9 mm x 9 mm 的单个样品,并将其侧面安装在钢制支架上进行金相抛光。通常在抛光过程中,软材料比硬材料去除得更快,但扫描隧道显微镜 (STM)、原子力显微镜 (AFM) 和触针轮廓仪的图像都显示,抛光后,SRM 的金线突出镍表面约 30 nm(图3)。我们推测,热处理可能形成了硬质金镍合金,或者由于抛光中的化学机械效应,镍的去除速度比金的去除速度更快。
摘要:本文介绍了一种铌酸锂 (LiNbO 3 ) 材料的微加工工艺,用于快速制作医疗器械应用的谐振传感器原型设计。采用激光微加工制造铌酸锂材料样品。使用扫描电子显微镜对表面进行定性目视检查。使用光学表面轮廓仪定量研究表面粗糙度。通过激光微加工可实现 0.526 µ m 的表面粗糙度。在不同工作环境和不同操作模式下检查了激光微加工传感器的性能。该传感器在真空中的品质因数 (Q 因数) 为 646;在空气中的 Q 因数为 222。建模和实验结果之间的良好匹配表明,激光微加工传感器具有用作谐振生物传感器的巨大潜力。
- 压电能量收集器的数值和分析能量性能建模; - 基于压电的 μEnergy 收集器布局设计; - 准备技术文件(带有制造配方的工艺流程); - 在高洁净度实验室中制造 μ-电子设备(在洁净室工作,处理专门的和先进的制造基础设施/机器); - 对制造的设备进行电气(交流和直流下的 IV、CV 和 4 线电阻测量)和分析(扫描电子和光学显微镜、轮廓仪、椭圆偏振仪、AFM)特性描述; - 分析和数据处理; - 编写技术和实验报告; - 在公认的科学期刊上准备自己的和为共同的科学出版物做出贡献; - 在国内和国际科学会议框架内准备自己的和为共同的科学传播做出贡献; - 主管分配的职责范围内的其他任务。