本研究重点关注使用原子层沉积法 (ALD) 获得的 AlN 薄膜中氢杂质引起的结构缺陷。目前,关于 AlN 薄膜本体中氢的存在的研究严重不足。傅里叶变换红外光谱 (FTIR) 是少数几种可以检测轻元素键的方法之一,尤其是氢。众所周知,氢是通过 ALD 方法生长的 AlN 薄膜中常见的污染物,它可能与氮形成不同的键,例如氨基 (-NH2) 或酰亚胺 (-NH) 基团,这会损害所得薄膜的质量。这就是为什么研究氢现象以及寻找合适的方法来消除或至少减少氢的数量很重要。在这项工作中,使用不同的前体、基材和沉积参数制备了几个样品,并使用 FTIR 和其他技术(如 AFM、XPS 和 EDS)进行了表征,以提供 AlN 薄膜的地形、形态和化学成分的比较和全面分析。
2000 年,人们在核静止质量数据中发现了中子排斥力,它是一种被忽视的核能来源,将过去 40 年许多令人费解的太空时代观测结果联系在一起,就像拱门上的拱顶石将拼图的其他部分锁在一起一样。太空、气候和核科学界的成员忽视了中子排斥力,就像他们忽视了之前三个关于地球热源的关键发现一样,这三个发现可能避免了最近有关地球气候的所谓科学预测的丑闻:a.) 太阳在超新星爆炸中诞生了太阳系,然后在坍缩的超新星核心上重新形成(图 1);b.) 在太阳系诞生时,r 过程中产生的过量 136 Xe 是陨石和行星中原始氦的示踪同位素(图 2);c.) 太阳中的质量分馏(图 3)富集了太阳表面的轻元素和每种元素的轻同位素。以上四项发现共同构成了解释以下原因的框架:1.)能量和中微子不断从富含铁的太阳和类似恒星中涌出;2.)像太阳这样一颗普通的恒星形成于前身恒星富含中子的核心;3.)太阳中中子衰变产生的太阳氢在前往富含氢的表面之前,在前往星际空间的途中,通过聚变产生太阳中微子;4.)随着中子排斥力克服引力吸引力,宇宙碎裂并膨胀,产生剧烈的恒星爆炸或稳定的中子发射,并衰变为氢,最终作为废物离开恒星。
认为短切纤维增强 2.2 层压板确实是随机的,这种说法过于乐观,甚至可能具有误导性。目视观察 5 mil 短切纤维 2.2 层压板,其外观不均匀,有深色和浅色区域(图 A)。为了确定短切纤维增强材料的均匀性,使用了 X 射线荧光。玻璃纤维的化学成分主要是氧化硅 (SiO 2 ),其次是 CaO 2 、Al 2 O3、MgO 和 B 2 O 3 。XRF 对重元素的敏感度高于碳或氟。因此,使用 XRF 追踪明暗区域中重 Si 和 Ca 的相对成分。第一个观察结果是,暗区和明区具有不同的密度(未显示表面分析)。散射强度与轻元素和重元素的浓度成正比。需要进行更详细的分析,以获得有关两个区域之间密度差异的定量信息。众所周知,PTFE 的 Dk 取决于高温致密化过程中从 PTFE 复合材料中压缩出来的空气量。图 B 显示了浅色和深色区域的 XRF 散射强度重叠(亚表面体分析)。深色区域的硅含量是深色区域的 2.35 倍,钙含量是深色区域的 1.34 倍。氧化硅(二氧化硅)的 Dk 为 3.28,明显高于 PTFE 的 2.1 Dk。硅和钙的不均匀分布表明制造过程容易产生非均匀的介电材料。目前尚不清楚哪种材料更均匀 - 短切纤维或连续编织增强的 2.2 Dk PTFE 复合材料。但必须指出的是,短切纤维层压板上的浅色和深色区域的域尺寸非常大,肉眼可见,并且肯定与编织玻璃纤维 PTFE 层压板(TLY-5)相当。真正随机短切纤维增强层压板的 x、y 和 z CTE 值相等。具有不同 Si 和 Ca 浓度的浅色和深色区域的大区域尺寸表明,层压板内可能存在具有波动 CTE 值的不同区域。