摘要。针对 COVID-19 等流行病的生物医学仪器和管理平台正在迅速采用支持物联网的医疗设备 (IoMT)。量子密钥分发 (QKD) 也被认为是应用顶级互联网战略的基本原理、工具、方法和思想,特别是在医疗保健和医疗领域。然而,使用 QKD 的高效端到端验证系统解决了协议的安全问题并简化了整个流程。因此,尽管成本可能会增加和出现错误的可能性,但必须实施一种新系统,使数据传输顺畅而不损害其完整性。当存在额外的传感器和设备并且需要更多能量来处理它们时,可以使用更有效的算法来降低功耗。
抽象的智能移动性和自动驾驶汽车(AV),必须非常精确地了解环境,以保证可靠的决策,并能够将公路部门获得的结果扩展到铁路等其他领域。为此,我们基于Yolov5引入了一个新的单阶段单眼3D对象检测卷积神经网络(CNN),该卷积神经网络(CNN)致力于公路和铁路环境的智能移动性应用。要执行3D参数回归,我们用混合锚盒替换了Yolov5的锚点。我们的方法有不同的模型大小,例如yolov5:小,中和大。我们提出的新模型已针对实时嵌入DED约束(轻巧,速度和准确性)进行了优化,该模型利用了被分裂注意的改进(SA)卷积所带来的改进(称为小型分裂注意模型(SMALL-SA)。为了验证我们的CNN模型,我们还通过利用视频游戏Grand Theft Auto V(GTAV)来引入一个新的虚拟数据集,以针对道路和铁路环境。我们在Kitti和我们自己的GTAV数据集上提供了不同模型的广泛结果。通过我们的结果,我们证明了我们的方法是最快的3D对象检测,其准确性结果接近Kitti Road数据集上的最新方法。我们进一步证明,GTAV虚拟数据集上的预训练过程提高了实际数据集(例如Kitti)的准确性,从而使我们的方法比最先进的方法获得了更高的准确性,该方法具有16.16%的3D平均均衡性精度,而硬CAR检测的推理时间为11.1 MS/rtx 3080 gpu的推理时间为11.1 s/simage。
摘要物联网(IoT)节点由收集环境数据的传感器组成,然后使用周围的节点和网关进行数据交换。网络安全攻击对任何物联网网络中正在传输的数据安全构成威胁。加密原始图被广泛采用以应对这些威胁;但是,实质性的计算要求限制了它们在物联网生态系统中的适用性。此外,每个物联网节点都随区域和吞吐量(TP)要求而变化,因此要求实现加密/解密过程。为了解决这些问题,这项工作通过采用环路折叠,循环独立且完全展开的体系结构来实现NIST轻巧的加密标准Ascon,Ascon,Ascon。完全展开的体系结构可以达到最高的TP,但以更高的面积利用为代价。通过较低的因素展开会导致较低的区域实施,从而探索了设计空间,以应对设计区域和TP性能之间的权衡。实施结果表明,对于环路折叠的结构,Ascon-128和Ascon-128a需要36.7k µm 2和38.5k µm 2芯片面积,而其全持续不经气的实施则需要277.1k µm 2和306.6k µm 2。拟议的实施策略可以调整回合的数量,以适应物联网生态系统的各种要求。还进行了具有开源45 nm PDK库的实现,以增强结果的概括和可重复性。
背景和目标:深度学习技巧极大地推动了面部图像的种族分类进步。尽管取得了这些进步,但许多现有方法依赖于复杂的模型,这些模型需要大量的计算成本并表现出缓慢的处理速度。本研究旨在通过利用转移学习以及结合了基于注意力的学习的改进的有效网络模型来介绍一种有效,强大的种族分类方法。方法:在这项研究中,有效的网络被用作基本模型,应用转移学习和注意机制来增强其在种族分类任务中的功效。有效NET的分类器组件在战略上进行了修改,以最大程度地减少参数计数,从而在不损害分类精度的情况下提高处理速度。为了解决数据集不平衡,我们实施了广泛的数据增强和随机的过采样技术。修改模型经过严格培训和在全面的数据集上进行了评估,并通过准确性,精度,召回和F1得分指标进行了评估。结果:修改后的有效网络模型表现出显着的分类精度,同时显着降低了UTK-FACE数据集的计算需求。具体来说,该模型的准确度为88.19%,反映了基本模型的增强2%。此外,它证明记忆消耗和参数计数减少了9-14%。此外,提出的方法增强了培训样本少约50%的班级测试准确性约5%。实时评估显示,处理速度的速度比基本模型快14%,并且达到了最高的F1得分结果,这强调了其对实际应用的有效性。结论:本研究提出了一个基于改进的有效网络体系结构的高效种族分类模型,该模型利用转移学习和基于注意力的学习来实现最先进的表现。所提出的方法不仅持有高精度,还可以确保快速处理速度,使其非常适合实时应用。调查结果表明,这种轻巧的模型可以有效地与更复杂和计算密集的最新方法相抗衡,从而为实践种族分类提供了宝贵的资产。
心电图(ECG)是通过分析心脏的电活动来评估心脏健康的重要诊断工具。本研究探讨了机器学习(ML)技术在ECG图形分析中的应用,旨在提高诊断心血管疾病的准确性和效率。通过临床咨询收集了一种多种心电图信号数据集,包括正常情况和异常病例。采用预处理技术来消除噪声,然后进行特征提取以识别临界模式。机器学习模型,包括支持向量机(SVM),随机森林和卷积神经网络(CNN),用于对诸如正常窦性心律,心房颤动和心室心动过速等节律进行分类。所提出的方法为协助临床医生在早期发现和诊断心脏条件下提供了一种可靠,有效的方法,其准确性,敏感性和特异性方面有希望的结果。
摘要 — 最近,忆阻器在各种应用中受到了广泛关注。即使是电阻式存储器件 (RRAM) 的一些主要缺点(例如可变性),也已成为以物理不可克隆功能 (PUF) 形式实现硬件安全性的有吸引力的特性。尽管文献中已经出现了几种基于 RRAM 的 PUF,但它们仍然存在与可靠性、可重构性和大量集成成本相关的一些问题。本文介绍了一种新型轻量级可重构 RRAM PUF (LRR-PUF),其中使用连接到同一位线和相同晶体管 (1T4R) 的多个 RRAM 单元来生成单个位响应。所使用的脉冲编程方法也很有创新性:1) 它允许实现节能的实现,2) 它利用切换 RRAM 单元作为 PUF 的主要熵源所需的脉冲数量的变化。所提出的 PUF 的主要特点是它几乎不需要额外成本就可以与任何 RRAM 架构集成。通过大量模拟,包括温度和电压变化的影响以及统计特性,我们证明了 LRR-PUF 表现出其他之前提出的基于 RRAM 的 PUF 所缺乏或难以实现的出色特性,包括高可靠性(几乎 100%),这对于加密密钥生成、可重构性、唯一性、成本和效率至关重要。此外,该设计成功通过了相关的 NIST 随机性测试。
摘要 — 近期所谓的深度伪造的现实创作和传播对社会生活、公民休息和法律构成了严重威胁。名人诽谤、选举操纵和深度伪造作为法庭证据只是深度伪造的一些潜在后果。基于 PyTorch 或 TensorFlow 等现代框架、FaceApp 和 REFACE 等视频处理应用程序以及经济的计算基础设施的开源训练模型的可用性简化了深度伪造的创作。大多数现有检测器专注于检测换脸、口型同步或木偶大师深度伪造,但几乎没有探索用于检测所有三种类型深度伪造的统一框架。本文提出了一个统一的框架,利用混合面部标志和我们新颖的心率特征的融合功能来检测所有类型的深度伪造。我们提出了新颖的心率特征,并将它们与面部标志特征融合,以更好地提取假视频的面部伪影和原始视频中的自然变化。我们利用这些特征训练了一个轻量级的 XGBoost,以对 deepfake 和真实视频进行分类。我们在包含所有类型 deepfake 的世界领袖数据集 (WLDR) 上评估了我们框架的性能。实验结果表明,与比较 deepfake 检测方法相比,所提出的框架具有更优异的检测性能。将我们的框架与深度学习模型候选模型 LSTM-FCN 进行性能比较,结果表明,所提出的模型取得了类似的结果,但它更具可解释性。索引术语 —Deepfakes、多媒体取证、随机森林集成、树提升、XGBoost、Faceswap、Lip sync、Puppet Master。
模型来规划城市的电力调度方式,估计城市电力负荷的未来趋势,并确定将电力损耗降至最低并维持稳定供需平衡的发电量(Mahajan 等人,2022 年)。准确的城市智能电力负荷预测对于城市电网保持稳定和财务可持续性至关重要。由于企业在周日停止运营,城市电力负荷数据中的电力负荷规模在周日通常比工作日小。这导致电力负荷预测中的数据不一致。现有的多模型系统(Huseien 和 Shah,2022 年)根据各种负荷分布划分电力负荷数据集,然后为每个子集创建预测模型并提供不同的预测。然而,开发包含许多模型的模型会增加总成本,并将电力分布的共享特性分割到各种负荷分布变化中(Xie 等人,2024 年)。
对CO 2排放的缓解一直是近几十年来的主要社会问题,而后燃烧后CO 2是研究界提出的有效策略。分层多孔地球聚合物整体使用基于挤出的3D打印来制造CO 2捕获。首先使用碱性激活剂和增塑剂制定基于高岭土的粘弹性糊,并且观察到粘度随时间增加。第二,使用不同的后处理条件(如热固化,热液固化和高温热处理及其物理机械特性和CO 2 Adsorptive)对3D打印的多孔整体进行处理。热固化和加热的样品表现出无定形相,而在水热处理的样品中观察到了沸石相。印刷并随后进行热处理的机械稳定样品显示出比传统铸造的地球聚合物(0.66 mmol/g)明显更高的CO 2吸附(1.22 mmol/g)。将3D打印与地球聚合物技术相结合可以为CO 2捕获提供可持续的方法设计和结构吸附剂。