在过去的十年中,肽发现的机器学习一直是150 FUL研究的努力,预计151将获得进一步的吸引力。尽管有152个工具可用于计算肽描述符和表示形式,但这些153个工具在集成过程中经常引入摩擦。这154个为这种跨学科领域创建了进入障碍。155肽旨在通过提供Acces-157 Sible编码解决方案在开箱即用的情况下弥合肽SE-156 QUENCES和机器学习库之间的差距。肽不是158仅使流行的编码方法像159一样易于访问,它还通过支持对肽属性的批判性161的翻译后修改来扩展可用工具160的功能。162