摘要:无人机,又称无人驾驶飞行器 (UAV),是当今最强大、最受欢迎的技术。无人机行业充满挑战,需要多种技术的协同才能取得成功。如今,无人机技术在研究人员和产品开发公司中是最受欢迎的技术,这是因为我们拥有种类繁多的控制器、处理器、传感器、电机等,可以根据军事或商业应用的需求进行最佳匹配。此外,对远程监控以及执行远程操作(例如运送食物、药品等)的需求也日益增长。尽管无人机具有这些诱人的优势,但由于飞行自主性、路径规划、电池续航时间、飞行时间和有限的有效载荷能力等方面的几个关键问题,其操作性仍面临限制,因为直觉上不建议装载电池等重物。因此,本研究的主要目标是深入了解无人机的潜力、特性和功能问题。本文探讨了无人机及其在军事和商业应用中的用途。还重点介绍了军事和商业应用的最新技术,不仅限于搜索和救援、监视、交通监控、天气监测和消防、个人任务、安全和新闻报道。关键词:无人机、技术、无人驾驶飞行器 (UAV)、GPS、机器人操作系统 (ROS)
摘要 - 我们已经设计了多表面Halbach高温超导体 - 永久磁导向道(HTS- PMG)的磁悬浮运输(MAGLEV)的布置(MAGLEV),并研究了动态响应特性外还研究了静态力参数。使用三种不同的HALBACH HTS – PMG排列与多面(6 HT,4 HTS),并在三个不同的冷却高度(FCHS)中进行静态和动态测量。使用多表面HALBACH HTS -PMG排列获得了较大的垂直载荷能力和更宽的载荷间隙。此外,多面排列的指导力值的近四倍是单个侧面的指导力值,这表明多面排列中的侧面HTSS对指导力有显着贡献,因此磁磁系统的横向运动稳定性。垂直和横向动态刚度值都随着FCH的降低而增加,也可以说,磁磁系统的动态刚度性能可以增强,尤其是通过使用多表面HALBACH HTS -PMG布置在侧向方向上。通过系统的2-D近似来支持这些实验观察结果。我们表明,通过使用单个材料参数(临界电流密度J C)进行整个超导组,可以令人满意地预测完整的一系列实验。从这项研究获得的静态和动态参数和
摘要纳米医学是一个快速增长的领域,它应用了纳米技术的原理来改善医疗保健,重点是诊断,治疗和预防疾病。纳米颗粒具有独特的特性,使其在医学中有用,包括高表面积与体积比和特定的靶向能力。本文回顾了制药行业中使用的不同类型的纳米医学及其潜在益处,以及靶向药物输送的机制。虽然纳米医学已经导致了全球销售疗法(如多克西尔和阿布拉辛)的发展,但必须解决监管和道德考虑,以确保安全和效力。还必须解决纳米医学在靶向药物输送中的局限性,例如有限的药物有效载荷能力和缺乏特异性。尽管面临挑战,但纳米医学的前景很有希望,有可能彻底改变个性化医学,改善疾病诊断和治疗,并支持组织再生和修复。与人工智能的整合可以导致更精确,有效的药物输送和疾病诊断。持续的研究人员,医疗保健提供者和行业合作伙伴之间的投资和合作可以帮助克服障碍,并释放纳米医学的全部潜力。总体而言,纳米医学是一个令人兴奋且有希望的领域,有可能显着改善医疗保健结果。
产品描述 BRUS 是一种无人机系统,具有先进的导航和操作功能,由远程操作员通过无线连接实时控制。BRUS 无人机主要由碳复合材料制成。独特的设计允许 BRUS 折叠到最小体积,只需放下两个臂并拆卸底盘,所有这些都无需使用工具。BRUS 可以配备多种有效载荷 - 用于快照和视频的相机、热像仪和红外相机以及多个传感器,如辐射监测模块等。BRUS 系统由两部分组成;无人机部分和地面控制站,允许与无人机交互并从传感器接收数据。地面控制站配备了强大的高级导航软件。命令控制由操纵杆或单击触摸屏提供。BRUS 有两种版本:基本版 BRUS 和重型版 BRUS,后者具有更高的性能和有效载荷能力。两种版本均可配备视频模块(日光高清摄像头)或视频 + 红外模块(日光摄像头、红外摄像头和飞行过程中在摄像头之间切换的系统)。该系统设计便于运输和操作。三个臂无需使用任何工具即可折叠,以装入运输箱中,其尺寸允许在普通汽车后备箱中运输。
航空航天行业以开发和采用尖端技术来应对设计轻型高性能车辆所涉及的挑战而闻名。很明显,基于设计的技术有助于以其速度和有效载荷能力推动航空航天车辆的设计,但在许多情况下,制造业的进步使这些不断发展的设计得以生产。新空间行业的经济力量正在使公司不仅考虑工程产品的未来,而且还要考虑优化制造过程本身的方法,以由更广泛的机器组成,其固定工具较少,可以随着明天的生产需求而发展。从1981年的成立开始,与传统的“减法制造”相比,加性制造(通常称为3D打印)提供了新的可能性,它通过启用按需制造,解锁新的设计功能并以无与伦比的速度允许迭代。虽然3D打印机的设计在控制印刷运动,可打印材料属性和机器可靠性方面受到限制,但随着公司通过扩大可打印材料的数量和类型,打印材料的数量和类型,并提高印刷功能,印刷功能,印刷信封音量和印刷速度,每年都会带来新的打印技术突破。由于价格下降和易用性的提高,随着越来越多的组织可以使用该技术,3D打印变得更加普遍。在大学环境中,3D打印提供
无人驾驶汽车(UAV)是具有巨大潜力的强大工具,但它们面临着巨大的挑战。主要问题之一是飞行耐力,受当前电池技术的限制。研究人员正在探索替代功率来源,包括混合系统和内燃机,并考虑用于电池交换或充电的对接站。除了耐力之外,无人机必须解决安全,有效的路径计划,有效载荷能力平衡和飞行自主权。考虑蜂群行为,避免碰撞和通信协议时,复杂性会增加。尽管存在这些挑战,但研究继续开利了无人机的潜力,而路径计划优化通过诸如杜鹃优化算法(COA)之类的元武器算法进行了显着提高。,而元海拔算法可以定义为系统级策略,用于寻求优化问题的次优解决方案。它将使用启发式方法与勘探/开发方案一起使用,以有效地使用大型解决方案空间。但是,动态环境仍然带来困难。无与伦比的发展范围已经超出了娱乐活动,在农业,送货服务,监视和救灾等行业中变得至关重要。通过解决与自主权,电池寿命和安全性有关的问题,可以完全优化无人机技术的好处。这项系统评价强调了无人机研究中连续创新以克服这些挑战的重要性。
飞机或旋翼机燃气涡轮发动机某些关键子系统的电气化为下一代航空发动机提供了许多宝贵的优势,如减轻重量、降低能耗、提高子系统和整个推进系统的效率、加快响应速度、更快更容易维修、比液压和气动系统可靠性更高、减少油耗、提高有效载荷能力、降低总生命周期成本、提高可维护性、发动机维护和操作更清洁、更好地分配机载资源、为维护和客户提供实时数据、提高健康监测能力等。发动机子系统的电气化还可以开发新的创新型飞机和发动机配置,例如,去除笨重而复杂的(发动机和/或飞机)附件驱动变速箱(ADG)或为 IGV、推力反向器门或任何其他可变几何部件引入和使用更多的 EMA(机电执行器)。在发动机和子系统(如润滑系统)中集成更多更智能的传感器是另一个明显的优势(例如油渣监测传感器或油箱液位传感器)。还将讨论更多电气子系统的集成,并了解与电源和热管理相关的固有风险(参见 AVT-RTG-333“将推进、电源和热子系统模型集成到飞行器概念设计中”)。因此,建议对涡扇和涡轴子系统电气化的当前趋势进行分析,并组织关于此主题的 RSM,目的是将 AVT 小组定位在此技术发展的前沿。背景
纳米技术通过控制纳米级级别的材料来刺激医疗和医疗保健疗法和疗法的巨大创新。它处理的是纳米化实体的制备通常从1到100 nm,与散装材料相比,它们具有独特的物理化学特性,可以在多种生物医学应用中实施。因此,纳米技术正在引起人们对实现个性化医学的限制以克服当前疗法的局限性的关注。的确,尽管药物输送仍然是医学科学的不断进步,但仍然代表着至关重要的挑战[1]。通过非病毒纳米传输器(NVS)递送药物,具有几种优势,例如可以自定义药物释放,溶解度,半衰期,生物利用度和免疫原性的可能性。已证明使用纳米载体,例如脂质体,胶束和纳米颗粒[2,3]可以提高药物的溶解度,并防止血液循环过程中酶,pH和其他因素降解(表1)。此外,NVS的可调节尺寸,形状和结构使它们能够达到相关的药物载荷能力。此外,它们的大小与人类细胞细胞器相当,它们可以与各种配体相互作用,包括亲水性和疏水性,靶细胞和细胞内室。毫无疑问,将治疗剂直接递送到目标是一个挑战,这对于增加其效率的同时减少副作用很重要[4,5]。调用化学治疗药具有多种常见的局限性,例如:(i)由于其疏水性而导致水中的低溶解度,(ii)缺乏癌细胞的选择性以及(iii)产生多药耐药性的潜力;例如,某些药物可以增加心肌梗塞,心脏病发作,中风和血块的风险[6]。
目的:建立了一种新型的叶酸受体靶向β-环糊精(β-CD)药物递送载体,以改善姜黄素的生物利用度,生物安全和药物载荷能力。受控释放和靶向递送。方法:合成并表征了叶酸偶联的β-CD-聚乳酮块共聚物。姜黄素负载的纳米颗粒(FA-CUR-NP)是通过自组装构成的。研究了制造的纳米颗粒的物理化学特性,稳定性,释放行为和靶向肿瘤的能力。结果:FA-Cur-NP的平均粒径和药物载荷分别为151.8 nm和20.27%。此外,FA-CUR-NP在体外表现出良好的稳定性72小时。该药物释放曲线表明,在pH 6.4磷酸盐缓冲溶液(PBS)中,FA-Cur-NPS的姜黄素被释放得比pH 7.4中的速度快,这表明与正常细胞相比,在肿瘤部位可以富集姜黄素。此外,FA受体介导的内吞作用有助于FA-Cur-NP的内在化,其细胞毒性与细胞摄取效率成正比。此外,体内研究证实,FA-Cur-NP在肿瘤部位表现出明显的积累和出色的抗肿瘤活性。结论:这些发现表明,FA-CUR-NP是通过主动靶向和可控释放来改善癌症治疗的一种有希望的方法。关键字:姜黄素,β-CD-聚乳酮共聚物,叶酸受体,靶向药物递送,HELA细胞
摘要 - 2020年代,Artemis计划致力于将人类降落到月球上,从而在十年末实现了可持续的月球存在。,要向月球表面提供大量有效载荷,以支持当前可用的地球发射系统的这些目标。发射系统的有效载荷能力限制了月球着陆器的大小,从而限制了其货物容量。幸运的是,如果多个着陆器在太空中融合在一起,则可以显着提高着陆器货物的能力。此概念以前已被引入为可加入的底盘,以最大程度地提高有效载荷(跳跃)着陆器。利用跳跃着陆器系统将增加选择权,并使遵守白宫高级领导层发出的指令更加容易发起月球上的长期活动。从定义上讲,这种活动意味着广泛的居住,流动性,研究和资源发展能力,进而要求大量批量交付到月面。本文开发了跳跃着陆器的三个概念插图变体。这些概念探索高光,氢和甲烷推进剂选择,以及实现此类着陆器概念所需的功率和热排斥系统。本文还估计了必要的航空电子,结构和机械子系统的质量。纸张记录了所得的配置,并建议跳跃着陆器在进一步开发中进行。
