商业无人机(或无人驾驶飞机)每年以14%的速度增长,因为远程行驶的飞船比用于许多功能的试验手工艺品更简单,更安全,更便宜,并且可能更小。除了无人机在军事应用和包装交付方面的广泛宣传的潜力外,无人驾驶飞机(UAV)还代表了一种更简单,更负担得起的解决方案,用于检查桥梁,监视电源线,检查农业领域的状况,喷涂农作物并执行其他工业任务。此外,城市空气流动性(UAM)市场具有巨大的潜力,因为拥挤的领空和交通拥堵产生了对小型飞机的需求,该飞机可以升空并降落在狭窄的空间中。垂直起飞和着陆(VTOL)飞机部门是当今日益注意力和投资的主题,这是有充分理由的。航空航天领导人,包括空中客车,劳斯莱斯和贝尔,正在开发产品解决方案,希望利用Booz Allen估计超过5000亿美元的市场机会。由于许多这些飞机可以携带两名或四名乘客,因此通过自治消除了飞行员的有效载荷能力增加了25%至50%,从而创造了很大的成本优势。但是,使VTOL飞机完全自主涉及到巨大的工程挑战。他们需要安全处理所有可能的情况,而无需人工操作员的干预。他们必须在每个可能的天气条件下从垂直飞行到水平飞行的困难过渡。,他们必须准确地感知周围的物理环境,以便它们可以可靠地区分无害的视觉现象,例如光反射与电势
摘要在全球朝着环境可持续性的推动下,锂离子电池是各种应用的主要电源,因为它们的高能量密度。因此,航空业越来越多地研究电气化,作为减少排放和对抗气候变化的潜在解决方案。然而,由于潜在的故障情况引起的安全问题阻碍了广泛的采用。对这些故障机制的全面理解对于提高锂离子电池安全性并为更可持续的航空未来铺平道路至关重要。本文在多样化的滥用条件下对锂离子电池故障机制的当前最新状态进行了批判性审查,其中包括热,电气和机械响应。它强调了在固有更安全的锂离子电池的设计中,整合结构,电和热响应的多物理模拟的重要性。此外,该论文专注于结构电池,这是一种新型技术,具有革新电动航空运输的潜力。结构电池通过无缝整合储能和承载能力来提供引人注目的解决方案。这种整合有可能减轻与电动飞机中常规电池组相关的重量罚款,从而扩大范围和有效载荷能力。本文分析了结构电池研究的挑战和未来方向。它强调了高级有限元分析模拟在滥用条件下结构电池的行为中的关键作用。这些模拟可以在预测内部短路发生,这是一个关键的安全问题。通过利用这种预测能力,可以加快更安全和更有效的结构电池的开发,为电动航空的更可持续的未来铺平道路。
摘要:纳米材料作为润滑油添加剂引起了极大的关注,因为它们具有可设计的组成和结构,合适的机械性能和可调的表面功能。但是,纳米材料和碱基油之间的兼容性不佳限制了其进一步的应用。在这项工作中,我们证明了油溶性聚(LAURYL甲基丙烯酸酯)(PLMA)刷刷的金属有机框架纳米颗粒(Nanomofs)是润滑油添加剂,可实现有效的摩擦减少和抗磨损性能。大型原始子,该聚合将其配位移植到UIO-67纳米颗粒的表面上。然后,通过表面启动的原子传递自由基聚合化在大型引起剂修饰的UIO-67上生长PLMA刷,从而极大地改善了UIO-67纳米颗粒的亲脂性特性,并显着增强了非极性溶剂溶液和碱基机油中胶体稳定性和长期分散性。通过将UIO-67@PLMA纳米颗粒添加到500 sn的基础油中,摩擦系数和磨损量减少了45.3%和75.5%,因为它们的出色机械性能和油的散发性。此外,UIO-67@PLMA添加剂的载荷能力从100 n大大增加到500 N,即使在65 Hz的高摩擦频率和120°C的高温下也证明了它们的出色摩擦学性能。我们的工作强调了油溶性聚合物刷官能化纳米型,以高效润滑添加剂。关键字:MOFS;聚合物刷;表面修饰;摩擦学特性;减少摩擦;反衣
喷嘴用作排气系统,以极高的速度排出推进剂气体。喷嘴在所有飞行条件下提供推力。它们是推进系统的主要部件,可将高压气体中储存的能量转化为推力,推动飞机或航天器前进。这确实会影响喷嘴的设计和优化,例如钟形、锥形或塞式喷嘴 - 虽然从理论上讲,甚至影响很大,影响燃油效率、有效载荷能力和任务的成功完成等问题。对于太空探索任务等复杂任务,喷嘴对于增强航天器的推进系统至关重要。当真空条件占主导地位时,例如在深空的情况下,喷嘴设计将变得更加重要,因为大气施加的压力直接影响废气的膨胀方式。火箭喷嘴的效率最终将决定哪种火箭是省油的,哪种火箭是成功的太空任务的完成者:发射卫星、向空间站运送货物,还是推动对遥远行星和卫星的探索任务。随着对太空的进一步探索,喷嘴将成为航天器中一项非常重要和创新的技术,反映了航空航天工程的未来发展方向。数百万美元的研究确实有道理。无论它是火箭还是喷气发动机的一部分,喷嘴都是提供速度和效率的装置,可以推动飞机飞向空中。现代飞机、喷气发动机和涡轮机喷嘴有三个用途:推力、将废气带回自由流以及设定发动机的质量流速。喷嘴位于动力涡轮机的下游。制造推力所遵循的原理是牛顿第三运动定律:每个作用力都有一个大小相等、方向相反的反作用力。
ITS 伸缩格构钢塔结构是全自动的,延伸高度范围为 +38’0” (12m) 至 +130’0” (40m) 高于地面 (AGL),标准有效载荷能力为 550lbs (250kg) 和 650lbs (295kg),具体取决于型号配置,并提供任何同类塔系统的最大风荷载能力。虽然所有 ITS 伸缩结构都可以在其最大延伸高度单独用于自支撑配置 ~ 不需要拉线,最高可达有效载荷、风荷载和风速的组合;与所有此类塔一样,在无人值守的场地长期部署时,通常始终建议使用拉线组件 ITS 结构是定制制造的,可直接安装到混凝土基础上,或集成到众多 ITS 拖车、卡车、滑橇或其他类似平台上。可利用由业界认可的独立结构工程和咨询公司执行和认证的严格有限元分析程序进行应力分析审查,以确定塔构件设计是否符合 ANSI/TIA-EIA 222-G 标准要求,适用于每个客户特定的负载配置。格构塔构件的建模采用梁单元作为支柱构件,桁架单元作为支撑,缆索单元作为升降和支撑缆索。构件的结构参数和几何形状包含在塔建模中。计算不同风向的风荷载,然后将其作为外部荷载施加在结构上,内部确定自重荷载。为了获得所有塔构件和拉线(如果使用)中发生的最大应力,需要考虑相对于塔和可选拉线的三个不同风向(迎风、顶风、平行风)。
印度武装部队正在进行前所未有的现代化建设,特别是航空资产现代化。引领这一雄心勃勃的进程的是印度空军 (IAF),该部队正在全面改造航空资产。正在进行的项目包括升级幻影 2000、米格 29 和美洲虎等第三代战斗机,通过引入新的第四代作战舰队增强能力,以及在印度联合开发和生产第五代战斗机 (FGFA)。到下一个十年初,印度空军计划将其作战中队的实力从目前的 34 个增加到 42 个。最终目标是拥有一支由 45 个中队组成的战斗机舰队,以应对两线同时冲突的需求。现代作战平台的引入必然伴随着印度空军目前库存中没有的新型先进武器系统。运输机队也正在通过引入波音 C-17 环球霸王 III、战略空运飞机和洛克希德马丁 C-130J 进行改造。印度斯坦航空有限公司 (HAL) 还与俄罗斯公司合作开发了一种有效载荷能力为 20 吨的双引擎运输机。这种飞机被称为中型战术运输机 (MTA),旨在取代已经过时的 An-32 飞机机队。此外,印度空军还计划采购 56 架中型战术运输机来取代 Avro 飞机机队。该项目已拨款约 12,000 亿卢比,预计很快将发布提案请求 (RFP)。除了固定翼平台外,印度空军还将对其机场基础设施进行大规模现代化改造
机智号可能是众多火星飞行器中的第一架。旋翼机增加了前往感兴趣地点的航程和速度。这使得以前被认为在火星上不可行的任务概念成为可能,例如在高海拔、陡峭地形、洞穴/熔岩管地区进行科学调查以及对低层大气进行勘测。美国宇航局艾姆斯研究中心和美国宇航局喷气推进实验室 (JPL) 最近所做的研究表明,旋翼机可以独立或作为探测车和着陆器的助手进行重要的科学研究。机智号一般大小的小型旋翼机可以整合到已经计划发射的任务中。此外,更大的旋翼机可以支持独立的新任务概念,但仍能够调整大小和配置以从遗产进入、下降和着陆 (EDL) 系统部署。其中一个感兴趣的任务概念是确定有机物是否与含粘土或富含二氧化硅的土壤有关。对于这样的任务,着陆器或探测车的小型旋翼机“机器人助手”可以帮助确定莫斯谷等地区的古代沉积物中是否含有生物特征。机智号已证明旋翼机可以相对快速且廉价地开发,并增加可在任何特定任务中执行的科学类型和数量。最近的研究表明,通过使用针对火星运行条件优化的新一代旋翼桨叶,机智号一般大小的旋翼机的性能特征可以显著增强 - 增加其航程、速度和有效载荷能力。旋翼机有可能成为未来所有着陆器和探测车任务的标准附件。本文介绍了一种先进的火星直升机设计,该设计充分利用了机智号火星直升机技术演示器 (MHTD) 的设计传统。
空军预备队从 KC-135E 加油机改装为较新的“R”型加油机将减少噪音污染、提高燃油卸载能力、提高有效载荷能力并延长飞行距离。March 于 7 月 1 日从第 507 联队接收了第一架 KC-135R。第二架来自 Tinker 的加油机将于 9 月 1 日抵达。第 507 联队承担着两大任务:一架配备在部队中的 KC-135 加油机,另一架配备在附属部队中的 E-3A 哨兵飞机,该联队将把这架飞机永久转交给 March。这架飞机由第 507 联队指挥官马丁·M·马齐克上校驾驶,并附有超大象征性“钥匙”,将呈交给第 452 空中交通管理司令部指挥官。第 507 联队将保留八架 KC-135R 飞机。加油机的转移将使马奇的预备役机组人员有机会使用 KC-135R 进行训练,因为他们的 KC 135E 改装了 R 型发动机和相关设备。马奇的八架 KC-135E 计划在 1998 年 11 月之前进行改造。第一架将于 8 月 12 日更换发动机。马奇的另外两架 KC135E 将转交给其他单位。当发动机更换和飞机转移完成后,第 452 空中机动联队将拥有 10 架 KC-135R 机队。堪萨斯州威奇托的波音公司设施与麦康奈尔空军基地共用一个联合机场,将安装新发动机、结构部件和新电气设备,包括机载辅助动力装置。马奇的六架 KC-13SE 计划
空间环境对低地球轨道柔性材料的影响 G. Bitetti (1) 、S. Mileti (1) 、M.Marchetti (1) 、P. Miccichè (1) (1) 意大利罗马“La Sapienza”大学航空航天和宇航工程系,Via Eudossiana 18,邮编 00184。电话 0039-0644585800,传真 0039-0644585670 电子邮件:grazia.bitetti@.uniroma1.it 摘要 未来的长期太空任务基于应用新型材料来替代金属材料,保持相同的机械和热光性能,但降低任务成本并满足结构设计要求。新的充气技术涉及使用柔性材料(纺织品、薄膜和低密度泡沫),以便获得小体积的可包装结构,从而增加有效载荷能力。由于与操作环境相关的破坏性因素,正确选择材料的起点是空间环境测试活动。本工作涉及对用于低地球轨道 (LEO) 充气应用的一些纺织品的测试活动,特别是 Kevlar、Zylon 和 Vectran。已经使用位于罗马 La Sapienza 大学航空航天系的 SASLab 实验室开发的两种不同的空间环境模拟器进行了环境测试,以研究高真空、热循环和原子氧效应。1. 简介未来长期太空探索任务最重要的要求是使用比机械同类产品更轻、更便宜的材料来设计空间结构,以保持相同的结构可靠性并延长使用寿命。将它们包装在更小的体积中的可能性可以降低任务成本。为了满足上述目标,已经开发出一种基于柔性结构设计的有前途的技术。充气技术涉及可展开结构,无论是否可刚性化,它都使用薄材料来减轻重量和提高包装效率:体积比最好的传统系统减少两倍以上。可展开结构可以轻松适应各种形状,生产成本低。过去,可扩展结构一直用于建造空间天线、太阳能电池阵、遮阳板和太空服。目前,越来越多的
关于 HyImpulse HyImpulse 是一家位于德国巴登-符腾堡州的发射服务提供商。HyImpulse 成立的目标是彻底改变太空出行方式,其轨道小型发射器 SL1 由独特专有的混合推进系统提供动力。这种颠覆性技术使 HyImpulse 能够为小型卫星和航天器提供经济实惠、频繁、响应迅速且安全的太空出行服务。SL1 的低地球轨道有效载荷能力为 600 公斤。SR75 是一种单级火箭,采用颠覆性的 HyImpulse 火箭发动机技术,使用固体石蜡燃料和液氧。它可携带高达 250 公斤的有效载荷,飞行高度可达 300 公里。它旨在发射微重力实验,用作多功能火箭助推器,并作为 HyImpulse 轨道运载火箭 SL1 的技术演示器。此次 SR75 的首次发射将验证创新型混合推进技术的飞行资格,这是 SL1 研发的基石。有关 HyImpulse Technologies 及其产品的更多信息,请访问 hyimpulse.de。关于 Southern Launch Southern Launch 通过为太空任务提供端到端的发射和返回服务,扩大了从南半球的太空探索。Southern Launch 在澳大利亚拥有并运营两处商业太空设施:用于亚轨道任务和太空返回的 Koonibba 试验场以及用于极地和太阳同步轨道轨道任务的 Whalers Way 轨道发射中心。更多信息请访问:https://southernlaunch.space关于 Koonibba 试验场 Koonibba 试验场是澳大利亚最大的商业火箭测试设施,专门从事亚轨道发射。Koonibba 试验场与 Koonibba 原住民社区公司合作运营。 Koonibba 试验场的射程可达 41,000 平方公里,射程可达 350 公里。使用 Koonibba 试验场的客户可以回收火箭和有效载荷,在发射入轨之前进行进一步测试和系统验证。媒体联系人:Altynay Demeubayeva HyImpulse Technologies 业务开发 +49 71395574931 demeubayeva@hyimpulse.de Amy Featherston Southern Launch 媒体和通讯经理 +61 400 456 016 Amy.featherston@southernlaunch.space