意义:功能性近红外光谱 (fNIRS) 是一种非侵入性技术,用于测量与神经功能相关的人体皮层血流动力学变化。由于其小型化潜力和相对较低的成本,fNIRS 已被提议用于脑机接口 (BCI) 等应用。与诱发神经活动产生的信号相比,大脑外生理产生的信号幅度相对较大,这使得实时 fNIRS 信号解释具有挑战性。通常使用结合生理相关辅助信号(例如短分离通道)的回归技术将脑血流动力学反应与信号中的混杂成分分离。然而,大脑外信号的耦合通常不是瞬时的,需要找到适当的延迟来优化干扰消除。
自20世纪初期其临床机构以来,颅内脑电图(IEEG)已成为评估和随后在癫痫手术中进行管理的基本方式(1-4)。通过使用下硬膜下电极(5)或立体定向脑电图(SEEG)(6)记录,IEEG允许癫痫发射区域的定位或癫痫发作网络引起癫痫发作(7,8)。计算机辅助信号处理方法在领域中流行,以支持癫痫发作的繁琐任务(9-11)。深度学习方法学在医疗领域取得了成功,因为它们从原始数据中提取信息的效率(12)。最近确定的机器学习方法之一是卷积神经网络(CNN)模型。cnn是人工神经网络,具有多个连续的层,以层次结构进行卷积(13,14)。它们被认为是需要处理多个数组数据的应用程序中的深度学习模型,因为它们可以成功地识别数据中的本地连词并从低级别的数据中构建高级功能(15)。在与大脑相关的科学和临床领域中,神经网络已成为脑部计算机界面的核心实体(16-23),对脑部疾病的辅助诊断和康复(24-27),并允许方法学改善NEUROSCICIENT(28 - 31)。更少的研究使用了深度学习来检测IEEG数据的癫痫发作(46)。针对脑电图(EEG)数据分析,特别是,通过CNN的深度学习已用于特征提取目的(32-34),认知性能的预测(35、36)和识别唤起电位(37)。近年来,深度学习已应用于颅外脑电图数据中,以促进成人(38 - 41),儿童(42)和新生儿种群(43)的癫痫发作检测,并识别发作的脑电图特征(44,45)。机器学习方法也已被用来将颅外脑电图与ECOG放电(47),预测癫痫发作(41、48),并设计癫痫发作检测嵌入式系统(49)。旨在使用颅内癫痫发作的脑癫痫发作的数据进行癫痫的颅内癫痫发作数据,受到每位患者可用的记录癫痫发作的少量限制。最近,美国食品药物管理局(FDA)批准的RNS系统的神经调节已在美国使用,作为药物治疗局灶性癫痫患者的替代微创和个性化治疗(50)。RNS系统是一种可植入的闭环电刺激装置,在检测出诊所模式后,将电刺激应用于癫痫发生组织(51 - 54)。