几个因素,包括辐射的类型,辐射(IR)时间表,IR技术和肿瘤和邻近正常组织的生物学特征,有助于放疗后的临床结果。鉴于其多方面的性质,必须了解放射疗法的各个方面,以制定新的策略来改善接受疗法的患者的放射治疗结果。放射治疗的标准分级时间表为1.8-2.0 Gy/天,每周五天。这减少了副作用,并允许受损的正常细胞在给出额外剂量之前恢复4、5)。然而,癌组织中存在称为癌症干细胞(CSC)的耐药亚群,被认为是预后不良的原因。最近,辐射耐药(RR)癌细胞为CSC的理论吸引了6-9的引起了很大的关注。尽管RR癌细胞或CSC继续持续很少的肿瘤,但它们会显着影响复发和转移
背景:肉瘤约占所有人类恶性肿瘤的1%;治疗耐药性是肉瘤预后不良的主要原因之一。积累的证据表明,包括miRNA,长NCRNA和圆形RNA在内的非编码RNA(NCRNA)是与化学疗法,靶向治疗和放射疗法之间通过各种途径在串扰之间涉及的重要分子。方法:我们搜索了PubMed(Medline)数据库,以了解有关肉瘤相关的NCRNA的文章,从成立到2022年8月17日。包括研究肉瘤中宿主衍生的miRNA,长NCRNA和圆形RNA的作用的研究。与NCRNA在治疗调控中的作用有关的数据及其作为预测肉瘤治疗反应的生物标志物的适用性。两名独立研究人员使用Würzburg方法论质量评分(W-MEQS)评估了研究的质量。结果:观察性研究揭示了对抗肿瘤治疗反应不同的肉瘤患者NCRNA的异位表达。实验研究已经证实了与化学疗法,靶向治疗和放射疗法的细胞途径之间的串扰。在纳入的研究中,W-MEQS得分范围为3至10(平均得分= 5.42)。 在研究NCRNA作为生物标志物的12篇文章中,没有一个包括验证队列。 选择性报告灵敏度,特异性和接收器工作曲线是常见的。在纳入的研究中,W-MEQS得分范围为3至10(平均得分= 5.42)。在研究NCRNA作为生物标志物的12篇文章中,没有一个包括验证队列。选择性报告灵敏度,特异性和接收器工作曲线是常见的。结论:尽管NCRNA似乎是良好的候选者,作为预测肉瘤的治疗反应和治疗疗法的生物标志物,但它们在组织中的差异表达使它们的应用变得复杂。进一步研究了它们抑制或激活这些调节分子以逆转治疗耐药性的潜力可能是有用的。资金:这项研究的文献检索得到了中国医科大学(M0949 to Tao Zhang)的345人才项目的经济支持。
[1] eDditional办公室,“用于调查核事故的灾难管理机器人的开发”,《灾难研究杂志》,第3卷,第4期,第4页,305-306,2008年8月。[2] Tomoharu doi,Mitsuyoshi Shimaoka,Shigekazu Suzuki,“由技术学院或Kosen教育工作者构想的创意机器人大赛”,《机器人和机械学杂志》,第34卷,第34卷,第34页,第3页,第498-508-508-508-508-508,20222222222.[3] Kenjiro Obara,Satoshi Kakudate,Kiyoshi Oka,Akira Ito,Toshiaki Yagi和Morita Yosuke,“ iTer远程维护的辐射硬度组件的开发”,《机器人和机械学杂志》,《杂志[4] Andrew West,Jordan Knapp,Barry Lennox,Steve Walters,Stephen Watts,“一台小COTS单板计算机用于移动机器人的辐射公差”,核工程和技术,第54卷,第54页,第54页。2198-2203,2022年12月。[5] Zhangli Liu,Zhiyuan Hu,Zhengxuan Zhang,Hua Shao,Hua Shao,Ming Chen,Dawei Bi,Dawei Bi,Bingxu Nig,Ru Wang,Shichang Zou,Shichang Zou,“全部剂量效应在高压记忆力和方法中,核工具和方法” pp.3498-3503,2010年9月。[6] Zhangli Liu Zhiyuan Hu, Zhengxuan Zhang, Hua Shao, Ming Chen, Dawei Bi, Bingxu Ning, Shichang Zou, “Comparison of TID response in core, input/output and high voltage transistors for flash memory,” Microelectronics Reliability, Vol.51, pp.1148-1151, March 2011.[7] Bingxu ning,Zhengxuan Zhang,Zhangli Liu,Zhiyuan Hu,Ming Chen,Ming Chen,Dawei Bi,Shichang Zou,“辐射诱导的浅沟裂缝隔离泄漏在180-NM FLSH内存技术中”[8] Sandhya Chandrashekhar,Helmut Puchner,Jun Mitani,Satoshi Shinozaki,Satoshi Shinozaki,Mohamed Sardi,David Hoffman,“辐射在16 nm浮动大门SLC SLC NAND闪光灯中诱导软沟,Microelectronics Reliaics Reliaics Reliaics”,第108卷,第11331页,第8页。
在考虑小型航天器结构时,材料选择至关重要。必须满足物理性能(密度,热膨胀和辐射抗性)和机械性能(模量,强度和韧性)的要求。典型结构的制造涉及金属和非金属材料,每种材料都提供优势和缺点。金属倾向于更均匀和各向同性,这意味着在每个点和每个方向上的特性都相似。非金属(例如复合材料)是不均匀的,并且根据设计是各向异性的,这意味着可以将属性量身定制为方向载荷。最近,基于树脂或基于光聚合物的AM已足够进展以创建各向同性零件。一般而言,结构材料的选择受到航天器的操作环境的约束,同时确保了足够的发射和操作负荷利润。审议必须包括更具体的问题,例如热平衡和热应力管理。有效载荷或仪器对挤压和热位移的敏感性。
在考虑小型航天器结构时,材料选择至关重要。必须满足物理性能(密度,热膨胀和辐射抗性)和机械性能(模量,强度和韧性)的要求。典型结构的制造涉及金属和非金属材料,每种材料都提供优势和缺点。金属倾向于更均匀和各向同性,这意味着在每个点和每个方向上的特性都相似。非金属(例如复合材料)是不均匀的,并且根据设计是各向异性的,这意味着可以将属性量身定制为方向载荷。最近,基于树脂或基于光聚合物的添加剂制造(AM)已足够进步以创建各向同性零件。一般而言,结构材料的选择受到航天器的操作环境的约束,同时确保了足够的发射和操作负荷利润。审议必须包括更具体的问题,例如热平衡和热应力管理。有效载荷或仪器对挤压和热位移的敏感性。
应使用增益,光圈和辐射抗性的概念对任何空中进行的完整分析,但这种方法在回答以下简单问题时曲折途径。“如果铁岩杆天线位于每米的强度E伏的辐射场,并且P.D.在线圈端子上是v伏特,我们如何找到适合关系的有效长度l v = le?”这是一个公平的问题,但是,从电磁理论和航空设计的文献中几乎没有得到理解。有一种相当简单的解决方案方法,该方法将在本文的后面介绍,但首先检查了更简单的结构,环或框架空中。假设一个循环与波长相比,大小很小,n圈封闭了一个平方米的区域,其平面与发射器一致。然后,传输磁场将正常通过a,如果没有从线圈中取出电流,则P.D。可以根据变化法则计算。如果磁场为h = hm sin 2trft 2trft,则链接的通量为µDAH,并且P.D.是
使用以各种剂量速率运行的工业辐照器研究了棕榈芽孢杆菌孢子对伽玛射线,X射线和电子束(E-Beam)的辐射抗性。剂量率如下:伽玛1和10 kgy/h; X射线10和200 kgy/h;电子束2000 kgy/h。回归分析表明,在所研究的吸收剂量范围为1 - 6 kgy的所有三个来源的幸存者曲线均为log 10线性,而与施加的剂量率无关。所有辐照技术都同样有效地使孢子失活,这反映在其可比的D值(p> 0.05)中,剂量率对杀菌效率没有影响。这些结果表明,无论递送指定的最低剂量,灭菌剂量都可以在医疗设备的工业灭菌技术中跨性别剂量跨性别,而不会对产品无菌产生任何影响。这些发现是从一项新的单一研究中进行的,涵盖了所有可用的工业辐射技术出于医疗设备的灭菌目的,可以促进我们对微生物破坏的理解,这与暴露于重要的灭菌方式有关,这将有助于这些技术在新兴行业机会中的未来适用性。
自从发现复制后不匹配校正和遗传性非polyposis结肠癌的故障之间存在联系以来,对这一复杂修复途径的研究引起了很多关注。通过保存从微生物到人类的这一过程的主要主角来促进我们对哺乳动物系统的理解。因此,用大肠杆菌提取物进行的生物化学实验有助于我们鉴定细菌不匹配修复蛋白的功能性人类同源物,而酿酒酵母的遗传学有助于我们对人类细胞表型在匹配校正中有效的表型的理解。今天,不匹配修复不再仅仅将其视为负责纠正复制误差的机制,而复制误差的失败以突变器表型和微卫星不稳定性的形式表现出来。马力也与有丝分裂和减数分裂重组,药物和电离辐射抗性,转录耦合修复和凋亡有关。阐明不匹配修复蛋白在这些转导途径中的作用是我们理解不匹配校正在人类癌症中的作用的关键。但是,为了揭示复制后不匹配的所有复杂性,我们需要了解各个参与者的演员阵容和角色。本简短的论文概述了我们当前对此过程生物化学的了解。关键字:凋亡/耐药性/遗传性非息肉病结肠癌/微卫星不稳定性/不匹配修复
LYNRED 是全球领先的航空航天、国防和商业市场高品质红外技术设计和制造公司。得益于其精通的波长可调 MCT 技术,其丰富的红外探测器产品组合覆盖了从近红外到远红外的整个电磁波谱。此外,MCT 技术的空间辐射抗性使 LYNRED 成为欧洲领先的太空红外探测器制造商。最近与太空探测器市场相关的一个显著趋势是,对多线性/多光谱阵列格式的需求增加(从大约 1000 个光电元件增加到 4000 个光电元件),同时对帧速率的需求也更高(帧时间从 100µs 增加到几百 µs)。然而,这些特性通常与目前太空市场现成的窗口式 2D 大型传感器不兼容,尤其是由于 2D 和线性传感器之间的技术操作点不同。因此,LYNRED 已启动特定的最新开发,以更好地适应未来的推扫式(通常基于多个多线性阵列)或扫帚式(通常基于一个多线性阵列)仪器概念。该产品组合扩展的主要挑战之一是设计一条多线性传感器空间产品线,不仅基于经过太空验证的构建模块传统,而且尽可能基于延迟差异化方法。这种设计方向将能够在较短的时间内最佳地满足最广泛的空间仪器需求。
适用性,出色的化学和物理稳定性以及有利的晶体生长习惯。金属卤化物被高度视为重要的光学功能材料,因为它们的优势是易于制备,丰富的配位环境,宽透明范围,高激光诱导的损伤阈值,并且在发光的边界eLS中应用,太阳能电池,太阳能电池,激光频率转换等等。22 - 29中,二元金属卤化物由于其简单的组成和成本效果而被广泛使用:KBR通常用作傅立叶变换红外(FT-IR)光谱的背景材料,因为其广泛的透明范围超过25 m m; 30 CAF 2和BAF 2具有出色的机械性能,热稳定性和辐射抗性,以及从深紫外线(UV)到IR区域的高透明度,这些透明度可用于光学棱镜,透镜,楔形板,隔膜,隔膜和其他重要的光学组件。31由于上述原因,二元金属卤化物的出色物理和化学特性与我们对下一代双重晶体材料的期望一致,这使得它们被视为具有巨大潜力的双折射材料国库。另一方面,金属卤化物显示出各种的配位模式,包括线性,三角形锥体,四面体和方形锥体结构,这是有希望的机会,可以识别具有相当性的构建块的隔离性各向异性各向异性材料。在基于Hg的卤化物中,除了传统的[HGX 4](X =卤素)四面体外,还存在很少的[X - HG - X]或[X - HG - HG - HG - HG - X]线性单位。25通过比较和筛选,由于其丰富的散装和广泛的透明范围,基于二进制的基于二进制汞(基于HG)的卤化物已成为我们的焦点。32 - 36 in