我们研究并确定任何有限时间物理过程的理想输入。我们证明熵流、热量和功的期望值都可以通过初始状态的 Hermitian 可观测量来确定。这些 Hermitian 算子概括了行为的广度和常见热力学目标的理想输入。我们展示了如何通过测量有限数量、实际上任意输入的热力学输出来构造这些 Hermitian 算子。因此,少量测试输入的行为决定了所有输入的全部热力学行为范围。对于任何过程,熵流、热量和功都可以通过纯输入态(各自算子的本征态)来极化。相反,最小化熵产生或最大化自由能变化的输入状态是从算子获得的非纯混合态,它们是凸优化问题的解。为了实现这些目标,我们提供了一种易于实现的密度矩阵流形梯度下降法,其中解析解在每个迭代步骤中产生有效的下降方向。有限域内的理想输入及其相关的热力学算子可以用较少的努力获得。这允许在无限维量子系统的量子子空间内分析理想的热力学输入;它还允许在经典极限中分析理想输入。我们的例子说明了“理想”输入的多样性:不同的初始状态使熵产生最小化,使自由能的变化极端化,并最大化工作提取。
摘要。验证的可靠性和实用性取决于适当表示不确定性的能力。关于神经网络验证的大多数现有工作依赖于输入的基于集合或概率的信息的假设。在这项工作中,我们依靠不精确的概率(特定P-boxes)的框架提出了Relu神经网络的定量性验证,这可以说明输入的概率信息和认识论的不确定性。,可以提高紧密性和效率之间的贸易,同时处理在投入方面的不确定性类别的更一般类别,并提供了完全确保的结果。
分别应用于空间输入的极化状态 ρ pol ( |𝐻⟩ , |𝑉⟩ , |𝐷⟩ , |𝐴⟩ , |𝑅⟩ , |𝐿⟩ )