本文根据低压差稳压器的行为,演示了如何使用数值模拟数据,基于加速退化测试数据进行可靠性性能评估。该稳压器采用 Cadence Virtuoso 软件和 180 nm AMS CMOS 技术设计,并通过模拟评估其输出电压随温度和输入电压的变化。输出电压退化数据是根据环境参数(输入电压和温度)约束生成的,这使得我们能够利用数值模拟模型和所提出的退化模型定义加速条件下的故障阈值。采用退化路径模型确定指定故障标准(5%)下的伪故障时间。然后,我们推导出加速度定律模型,通过执行最大似然估计法来估计可靠性模型参数,不仅可以分析,还可以预测不同电压和温度应力条件下稳压器的寿命数据分布。
PWM是最早提出的控制方法,通过比较参考电压与反馈电压来调整控制信号的占空比,调节DC-DC变换器的输出,达到自动调节的效果,具有输出电压恒定、开关噪声可预测、容易滤波等优点,但由于开关管频率固定、功耗恒定,在轻载时转换效率较差。PFM的引入,利用调整控制信号解决了PWM的轻载问题。频率调制技术减少了转换过程中的开关负载,不需要复杂的变换器结构,因此不需要控制环路补偿网络,但频率变化引起的响应速度慢、输出电压纹波大,会产生难以控制的电磁干扰。两种方法都有各自的特点和问题(Yu,2003)。
摘要 - 电动汽车的关键要求是有效的制动。这项研究的目的是提供利用各种电源调节器的再生制动系统的详细描述。这项研究利用了降压型增强转换器。使用两种方法来修改从再生制动过程中产生的波动输入得出的电压:一种用于减少其,另一种用于增强其。随后,电压传感器检测到所得的输出电压,然后使用Arduino微控制器调节该电压。检查结果表明,降压转换器的性能良好,将输出电压保持在39-40伏的范围内。即使输入电压中有波动,这也可以很好地发挥作用。电压值可用于为36伏电动机的电池充电。这些发现证明了利用降压转换器调节器的功效。此外,它可以在8秒钟内为电池充电,这使其成为电动汽车的可行选择,以替代电池再生制动。
摘要 — 在本文中,我们提出了一种将声音转换为电能并将其用于各种应用的想法。压电换能器用于将声音转换为电能。其背后的基本原理是压电效应。当电能施加在压电晶体上时,它开始振动。同样,当由于声音或机械能施加在压电晶体上而产生的振动时,也会产生压电现象。这里,四个压电换能器与声音传感器连接,以产生 3-5 伏范围内的输出电压。输出电压通过使用升压转换器来升压。然后将电压存储在可充电电池中并用于交通信号控制器等应用。PIC 微控制器用于为交通信号控制器提供操作标准和时间延迟,继电器用于说明应用目的索引术语 - 压电换能器、PIC、声音传感器、升压转换器、可充电电池
4.最坏情况特性是在输入代码从 0 转换到 255 时获得的,并且如果在 V OUT 或 V OUT 与 V CCA 之间连接了大于 75 Ω 的外部负载阻抗。已使用有源探头在 V OUT 与 AGND 之间测量了指定值。V OUT 与 AGND 之间未施加其他负载阻抗。所有输入数据均在时钟的上升沿锁存。在时钟的高电平(CLK = 高电平)期间,输出电压保持稳定(与输入数据变化无关)。在时钟从低电平转换到高电平(CLK = 低电平)期间,DAC 以透明模式运行(输入数据将直接传输到其相应的模拟输出电压(见图 5)。
该充电器采用同步的降压转换器,允许从传统5V USB输入源,HVDCP和USB-PD电源从1S充电到4S电池。它取决于输入到系统输出电压差,以雄鹿,增强或降压模式不间断地运行。当输入电压接近系统输出电压时,转换器以专有降压模式运行。充电器输出电压可在VSYS端子上获得。在没有输入源的情况下,充电器25单击支持USB OTG函数,并且可以在USB C连接器(以及VBUS终端)上生成可调节的2.8V-22V电压,该电压符合USB PD 3.0规格。也支持快速充电,因为BQ25792提供了D+/D-握手,并且符合USB 2.0和USB 3.0 PD。
farmotex.com › 产品目录 PDF 2013 年 11 月 2 日 — 2013 年 11 月 2 日 3 KVA - 100 KVA 3PH – 风冷 ...用于高可靠性的固态控制电路...用于读取输入和输出电压和电流的数字表4 页
注:“xxx”为3位数字(050、055-750、080-090、095-155、160-360),表示除以10后的输出电压(单位为伏特),步长为0.1V,例如,“050”表示5.0Vdc;“360”表示36.0Vdc。“yyyy”为4位数字(0010-4200),表示输出电流(单位为毫安),步长为10mA,例如,“0670”表示670mA,“4200”表示4200mA。当EUT为直接插入式装置时,“z”可以是E和I,代表使用不同国家的插头。“E”表示固定式欧洲插头;“I”表示使用可拆卸插头式外壳。当EUT为台式装置时,“z”可以是D和DE,代表使用不同国家的插头。 “D”表示使用交流电源插座;“DE”表示带交流电源线的欧式插头。通过输出电压和输出电流的乘积,型号名称受到最大输出功率和最大输出电流的限制。
TR/SS(引脚 B2):TR/SS 引脚用于提供软启动或跟踪功能。内部 2μA 上拉电流与连接到此引脚的外部电容器相结合,产生电压斜坡。输出电压跟踪到此电压。为了进行跟踪,请将电阻分压器从跟踪的输出连接到此引脚。在关机和故障条件下,此引脚通过内部 MOSFET 接地;如果从低阻抗输出驱动,请使用串联电阻。如果不需要跟踪功能,则此引脚可以悬空。在启动期间,如果在 TR/SS 上使用相对较低的电容器,输出电压可能需要比预期更长的时间才能达到调节效果。如果需要准确的启动时间,请参考 LTspice 中的 LTM8071 仿真模型,以帮助选择合适的软启动电容器。
罗盘传感器通过检测地球磁场来确定车辆的方向。一个励磁线圈和两个垂直的传感线圈缠绕在环形磁芯磁铁的中心。当交流电压施加到励磁线圈时,磁中心的磁通量会发生变化,并通过传感线圈中的电磁感应产生电压。当没有外部磁场时,磁通量变化会产生对称波形。当外部磁场 H 以直角施加到输出线圈 Vx 时,它会叠加在磁化电流产生的磁场上,磁通量会发生变化变得不对称(见图 7)。输出电压与差值的变化率成比例。当外部磁场 H 以一定角度 φ 施加时,可以感测输出电压 Vx 和 Vy,并使用如下所示的关系计算车辆方向:
