1材料部的化学和物理单位,贾瓦哈拉尔·尼赫鲁(Jawaharlal Nehru)高级科学研究中心,班加拉罗尔560064,印度2,印度2国际材料科学中心,Jawaharlal Nehru先进科学研究中心,班加拉罗尔560064,印度560064,印度360064,印度材料3次高级材料学院。 IMN-CSIC,C/ISAAC NEWTON 8,TRES CANTOS,TRES CANTOS,28760 MADRID,MADRID 5澳大利亚州5澳大利亚州Microscopy and Microanalysis中心,NEW,新南威尔士州Camperdown,2006弗吉尼亚大学,夏洛茨维尔,弗吉尼亚22904,美国8物理系,弗吉尼亚大学夏洛茨维尔,弗吉尼亚州22904,美国
计算机架构中的传统建模方法旨在获得处理器设计的性能,区域和能量的准确估算。随着规范执行攻击的出现及其安全问题,这些传统的建模技术在用于针对这些攻击的防御措施的安全评估时,这些传统建模技术不足。本文提出了Pensieve,这是一个针对早期Mi-Croarchitectural Defenses to to to tosulative decution攻击的安全评估框架。在核心上,它引入了一种系统研究早期防御的建模学科。此学科使我们能够覆盖功能等效的设计空间,同时由于资源争议和微体系优化而精确地捕获正时变化。我们实现了模型检查框架,以自动找到设计中的漏洞。我们使用笔迹来评估一系列最先进的猜测防御方案,包括延迟失误,Invisispec和Ghostminion,以正式定义的安全性属性,投机性非干扰。pensieve在所有这些防御方面都发现了类似Spectre的攻击,其中包括一种新的投机干扰攻击变体,它破坏了Ghostminion,这是最新的防御力之一。
数据可用性声明:支持本研究结果的数据可根据合理要求从通讯作者处获取。1 H. Amano、Y. Baines、E. Beam 等人,2018 年 GaN 电力电子路线图,Journal of Physics D: Applied Physics。51,(2018)。2 K. Husna Hamza 和 D. Nirmal,GaN HEMT 宽带功率放大器综述,AEU - 国际电子和通信杂志。116,153040 (2020)。3 G. Meneghesso、M. Meneghini、I. Rossetto、D. Bisi、S. Stoffels、M. Van Hove、S. Decoutere 和 E. Zanoni,GaN 基功率 HEMT 的可靠性和寄生问题:综述,半导体科学与技术。31,(2016)。 4 JA del Alamo 和 J. Joh,GaN HEMT 可靠性,微电子可靠性。49,1200-1206 页 (2009)。5 M. Meneghini、A. Tajalli、P. Moens、A. Banerjee、E. Zanoni 和 G. Meneghesso,基于 GaN 的功率 HEMT 中的捕获现象和退化机制,半导体加工材料科学。78,118-126 页 (2018)。6 B. Kim、D. Moon、K. Joo、S. Oh、YK Lee、Y. Park、Y. Nanishi 和 E. Yoon,通过导电原子力显微镜研究 n-GaN 中的漏电流路径,应用物理快报。104,(2014)。 7 M. Knetzger、E. Meissner、J. Derluyn、M. Germain 和 J. Friedrich,《用于电力电子的碳掺杂变化与硅基氮化镓垂直击穿之间的关系》,《微电子可靠性》。66,16-21 (2016)。 8 A. Lesnik、MP Hoffmann、A. Fariza、J. Bläsing、H. Witte、P. Veit、F. Hörich、C. Berger、J. Hennig、A. Dadgar 和 A. Strittmatter,《碳掺杂氮化镓的性质,固体物理状态 (b)》。254,(2017)。 9 B. Heying、EJ Tarsa、CR Elsass、P. Fini、SP DenBaars 和 JS Speck,《位错介导的氮化镓表面形貌》,《应用物理学杂志》。 85,6470-6476 (1999)。
纳米晶体 (NC) 现已成为光子应用的既定基石。然而,它们在光电子学中的集成尚未达到同样的成熟度,部分原因是人们认为瓶颈在于跳跃传导导致的固有有限迁移率。人们做出了巨大努力来提高这种迁移率,特别是通过调整粒子表面化学以实现更大的粒子间电子耦合,并且已经实现了 ≈ 10 cm 2 V − 1 s − 1 的迁移率值。人们承认,这个值仍然明显低于 2D 电子气体中获得的值,但与具有类似约束能的外延生长异质结构中垂直传输的迁移率相当。由于进一步提高迁移率值的前景似乎有限,因此建议应将精力集中在探索跳跃传导带来的潜在好处上。这些优势之一是扩散长度对偏置的依赖性,这在设计基于 NC 的设备的偏置可重构光学响应方面起着关键作用。本文将回顾构建偏置激活设备的一些最新成果,并讨论设计未来结构的基本标准。最终,跳跃传导是产生低无序材料无法提供的新功能的机会。
首次尝试评估半导体天然橡胶的电荷传输特性。合成了四种不同比例的碘-橡胶复合材料,并通过电流密度-电压特性 (JV) 和阻抗谱测试了电荷传输。确定了最佳迁移率值的最佳掺杂比,并讨论了注入势垒高度对迁移率的影响。还尝试将态密度 (DOS) 与迁移率和掺杂比关联起来。在相同的环境和实验条件下,将半导体天然橡胶的传输特性与最流行的 p 型材料之一聚(3-己基噻吩-2,5-二基)(P3HT)进行了比较,以证明其作为经济高效且绿色的替代有机半导体的潜力。
高击穿电压:GaN器件可以处理高电压 高电子迁移率:GaN晶体管用于无线通信的功率放大器 高电子迁移率:GaAs表现出优异的电子传输特性,使其适用于高频应用 低噪声系数:基于GaAs的器件通常用于敏感RF接收器的低噪声放大器(LNA) 高功率处理能力:GaAs功率放大器在RF通信系统中普遍存在。
方法:这是一项随机对照临床试验,并在虚拟平台上进行了注册,用于注册实验和非实验研究“ Registro brasileiro de ensaiosclínicos(rebec)”。三十四名没有PD的性别的老年人分为四组:力量训练对照(GSC,n = 8);效力训练控制(GPC),n = 9;具有PD的受试者接受了力量训练(GSPD,n = 8);具有PD的受试者接受了效力训练(GPPD,n = 9)。GSC和GPC包括没有神经系统疾病的史。PF和RFD。fm:步态速度测试(GS),定时和进行(拖船),短体性能电池(SPPB),统一的帕金森氏病评级量表(UPDRS);在力平台上平行脚。接下来,参与者每周连续八个星期进行下肢肌肉力量或肌肉力量训练,然后重新评估。
增强软弹性体内的断裂韧性和自我修复对于延长软设备的运行寿命至关重要。在此,据揭示,通过掺入增塑剂或热处理来调整羧化官能化聚氨酯的聚合物链迁移率可以增强这些特性。自我修复被提升,因为聚合物链增强了对破裂界面的迁移率更大,以使其键合粘结。将温度从80°C升至120°C,恢复的骨折工作从2.86增加到123.7 MJ M -3。通过两个效应实现了改善的断裂韧性。首先,强烈的羧基氢键在破裂时会散发大能量。第二,链迁移率使局部应力浓度的重新分布允许裂纹钝化,从而扩大了耗散区的大小。在增塑剂(3 wt。%)或温度(40°C)的最佳条件下,分别从16.3和25.6 kJ m -2提高断裂韧性。通过双悬臂梁测试揭示了愈合软界面处断裂特性的见解。这些测量值表明断裂力学在延迟部分自我修复时延迟完全失败方面起着关键作用。通过在坚韧而自我修复的弹性体中传授最佳聚合物链迁移率,可以实现有效的预防损害和更好的恢复。
摘要 — 几十年来,对于从 4K 到室温以上的硅载流子,一直没有开发出统一的模型。本文提出了一个统一的未掺杂硅低场和高场迁移率模型,分别针对 8K 到 300K 和 430K 时<100>和<111>方向的电子以及 6K 到 430K 时<100>方向的空穴。研究发现,Canali 高场饱和模型足以拟合<111>实验数据,但不能拟合<100>数据,这是由于各向异性引起的平台期和负差速度。因此,使用了改进的 Farahmand 模型。为了允许在各向异性模拟中进行参数插值,还针对<111>方向校准了改进的 Farahmand 模型。然后使用该模型预测 4K 下未掺杂 Si 中电子和空穴的迁移率,当有可靠的实验数据可用于 TCAD 模型开发时,该迁移率可作为初始校准参数。
在过去的几十年中,SI金属 - 氧化物 - 氧化物 - 官方局部效应晶体管(MOSFET)的设备缩放缩放,遵循摩尔定律,驱动了构成金属 - 氧化物 - 氧化物 - 氧化物 - 溶剂导体(CMOS)集成的cir- cir- cir- cir- cir- cir- cir- cir-cuits的快速发展[1-3]。最近,随着常规设备缩放的物理极限,Si mosfets的性能提高越来越难以实现[4]。较高的Channel迁移率有效地改善了MOSFET的性能,通过应用扭曲的SI技术,这已经很好地证明了这一点[5,6]。但是,仍然需要先进的MOSFET技术来进一步提高CMOS设备的性能。移动性高于SI的替代通道材料引起了人们对改善MOSFET性能的极大兴趣。在这些高迁移率材料中,GE和GESN由于其高迁移率以及SI平台上的出色整体性而有希望[7-12]。