正常状态下,通过负载对电池放电, DW02R 电路的 VM 端电压将随放电电流的增加而升高。如果放电电 流增加使 VM 端电压超过过电流放电保护阈值 V EDI ,且持续时间超过过电流放电保护延迟时间 tEDI ,则 DW02R 进入过电流放电保护状态;如果放电电流进一步增加使 VM 端电压超过电池短路保护阈值 V SHORT ,且 持续时间超过短路延迟时间 t short ,则 DW02R 进入电池短路保护状态。
本 IC 是锂离子 / 锂聚合物充电电池的高端保护 IC,包含高精度电压检测电路、延迟电路和三重升压充电泵,用于驱动外部充电 / 放电 FET。适用于保护 1 节锂离子 / 锂聚合物充电电池组免受过充电、过放电和过电流的影响。通过使用外部过电流检测电阻,本 IC 实现了高精度过电流保护,且受温度变化的影响较小。 特点 ● 高精度电压检测电路 过充电检测电压 3.500 V ~ 4.800 V (5 mV 进阶) 精度±15 mV 过充电解除电压 3.100 V ~ 4.800 V *1 精度±50 mV 过放电检测电压 2.000 V ~ 3.000 V (10 mV 进阶) 精度±50 mV 过放电解除电压 2.000 V ~ 3.400 V *2 精度±75 mV 放电过电流 1 检测电压 -3 mV ~ -100 mV (0.25 mV 进阶) 精度±1 mV 放电过电流 2 检测电压 -6 mV ~ -100 mV (0.5 mV 进阶) 精度±3 mV 负载短路检测电压 -20 mV ~ -100 mV (1 mV 进阶) 精度±5 mV 充电过电流检测电压3 mV ~ 100 mV(0.25 mV 进阶) 精度±1 mV 0 V 电池充电禁止电池电压 1.45 V ~ 2.00 V *3(50 mV 进阶) 精度±50 mV ● 过热检测功能:有、无 ● 带外置 NTC 热敏电阻的高精度温度检测电路(阻值:25°C 时 100 kΩ±1% 或 470 kΩ±1%,B 常数:±1%) 过热检测温度 +65°C ~ +85°C(5°C 进阶) 精度±3°C 过热释放温度 +55°C ~ +80°C(5°C 进阶)*4 精度±5°C ● 内置电荷泵:三重升压(调节电压 = V DD + 4.2 V) ● 检测延迟时间仅由内部电路产生(不需要外置电容器)。 ● 放电过电流控制功能 放电过电流状态的解除条件 : 断开负载、连接充电器 ● 0 V 电池充电 : 允许、禁止 ● 休眠功能 : 有、无 ● 省电功能 : 有、无 ● PS 端子内部电阻连接 通常状态下 : 上拉、下拉 省电状态下 : 上拉、下拉 ● PS 端子内部电阻值 : 1 MΩ ~ 10 MΩ (1 MΩ 进阶单位) ● PS 端子控制逻辑 : 动态 "H"、动态 "L" ● 高耐压 : VM 端子、CO 端子和 DO 端子 : 绝对最大额定值 28V ● 宽工作温度范围 : Ta = -40°C ~ +85°C ● 低消耗电流 工作时 : 6.0 µA 典型值、10 µA 最大值 (Ta = +25°C) 休眠时 : 50 nA 最大值 (Ta = +25°C) 过放电时 : 1.0 µA 最大值(Ta = +25°C) 省电时:50 nA(最大值) (Ta = +25°C) ● 无铅、Sn100%、无卤素 *5
基于强化学习的控制器使我们能够根据系统的奖励制定控制策略。在[1]中,特定电动机的奖励函数的定义如图2,其中不同区域是:A - 参考扭矩隔离, - 通量弱化的操作,b-防止电压欠压,C - 通量扩增操作,D - 防止短时间过电流, - 短时间过电流,E-防止当前限制违规,E-电流限制。
• High-accuracy voltage detection circuit Overcharge detection voltage 3.500 V to 4.800 V (5 mV step) Accuracy ±15 mV Overcharge release voltage 3.100 V to 4.800 V *1 Accuracy ±50 mV Overdischarge detection voltage 2.000 V to 3.000 V (10 mV step) Accuracy ±50 mV Overdischarge release voltage 2.000 V to 3.400 V *2准确性±75 mV放电过电流1检测电压5 mV至100 mV(0.5 mV步)精度±1.5 mV排放过电流2检测电压10 mV至100 mV至100 mV(1 mV步骤)精度±3 mV载荷量±3 mV载荷载荷量短,可检测20 mV至100 mV(1 mV)的精度3毫米1 mv 1 mv 1 mv 1 mv 1 mv 5 5 mv 5 5 mv 5 5 mv;步骤)准确性±10 mV电荷过电流检测电压-100 mV至-5 mV(0.5 mV步)精度±1.5 mV•仅通过内部电路(不必要外部电容器)生成检测延迟时间。•放电过电流控制功能释放出排出过电流状态的条件:负载断开释放电压过电流状态的电压:放电过电流释放电压(v riov)= v dd×0.8(typ。)•0 V电池充电:启用,抑制•功率功能:可用,不可用•高功能电压:VM PIN和CO PIN:绝对最大额定值28 V•宽操作温度范围:TA = -40°C至 +125°C•操作过程中低电流消耗量:2.0 µA typ,4.0 µA typ.4.0 µ µA typ。(ta = +25°C)在降压期间:最大50 Na。(TA = +25°C)过度过度:最大0.5 µA。(TA = +25°C)•无铅(SN 100%),无卤素•AEC-Q100的过程 *3 *1。过度充电释放电压=过度充电检测电压 - 过度充电磁滞电压(可以在50 mV步骤中选择为0 V或从0.1 V至0.4 V范围选择。*2。过度释放释放电压=过度放电检测电压 +过度放电磁滞电压(过度放电磁滞电压可以作为0 V或从100 mV步骤中的0.1 V至0.7 V范围选择。)*3。请联系我们的销售代表以获取详细信息。应用程序
积极的过电流保护 - 过电流保护(OCP)用于采购和下沉输出电流状况。与上部MOSFET平行的准确电流传感器试点设备用于峰值电流控制信号和过电流保护。电流在最正峰和负山谷振幅下的输出电流纹波上被感测并监测,以采购和下沉条件。由于OCP使用的峰值检测,过量的波纹电流降低了直流输出电流能力。如果在先前的八个切换周期中的四个中超过OCP阈值,则会触发 OCP。 在OCP阈值上方的第四电流峰值上,设备进入故障状态,停止切换,并通过输出加载来降低输出。 设备试图在打ic模式下再次打开,当过电流条件消失时,输出软再次启动到受调节的输出电压。 典型的OCP阈值为〜5a,〜1.7倍,额定输出电流为3A,为峰值波纹电流提供了净空。 在软启动期间,在〜6a处有一个额外的过电流保护,以防止短路或以其他方式损坏的负载。 调用后,此故障会进入打ic启动骑自行车,直到成功重新启动为止。OCP。在OCP阈值上方的第四电流峰值上,设备进入故障状态,停止切换,并通过输出加载来降低输出。设备试图在打ic模式下再次打开,当过电流条件消失时,输出软再次启动到受调节的输出电压。典型的OCP阈值为〜5a,〜1.7倍,额定输出电流为3A,为峰值波纹电流提供了净空。在软启动期间,在〜6a处有一个额外的过电流保护,以防止短路或以其他方式损坏的负载。调用后,此故障会进入打ic启动骑自行车,直到成功重新启动为止。
过电流循环是指对超导磁带/设备施加重复过电的过程,以表征其临界电流的降低。表征了稀土钡氧化铜(Rebco)磁带的过电流循环行为是高温超导(HTS)设备设计过程中的关键步骤。在HTS设备操作过程中,多起过电流事件可以显着降低总临界电流,从而导致潜在的淬火和故障。数据驱动的模型,以估计Rebco磁带的关键电流降解率(CCDR)在当前情况下。但是,在关键电流减少的估计中,这些方法在8%至11%的范围内表现出明显的误差。本文提出了基于人工智能(AI)技术的方法,该技术针对CCDR估计的常规方法的挑战。提出,测试了不同的基于AI的技术,并进行了比较,以显示提出的智能方法的有效性,包括支持向量回归(SVR),决策树(DT),径向基函数(RBF)和模糊推理系统(FIS)。对经过多个磁带的关键电流值进行了多个磁带的临界电流值,对当前周期进行了重复和重复性。结果表明,SVR方法的平均相对误差(MRE)为23%,对于DT模型约为0.61%,FIS模型的MRE远高于0.06%,RBF方法的MRE值约为1.1×10-6%。此外,提出的AI模型提供了快速测试时间,范围从1到11毫秒。这些发现强调了使用AI技术来增强与过电流事件相关的风险的估计准确性的潜力。
额定电压51.2 VDC电源1600W过度充电保护,过电流保护,过度振荡保护,太阳能电池板的反向连接保护,晚上反向充电保护。无需用于备用电池的反向连接保护(需要外部保险丝)
BM3451是3/4/5牢房可充电电池组的专业保护IC;它是高度集成的,通常用于电动工具,电动自行车和UPS应用程序。BM3451不断地监视每个电池的电压,电流或排放的电流以及环境的温度,以提供过度充电,过度递减,排放过电流,短路,电荷过电和过度温度的保护等。此外,它还可以通过设置外部电容器来改变过度充电,过度放电和排放过电流的保护延迟时间。BM3451为细胞容量平衡功能提供了外部出血,以避免每个单元之间的容量不平衡。因此,电池可以工作更长的时间。嵌入BM3451 IC中的扩展功能模块可以使它们在带有多个芯片的更多电池组中工作,并且它们可以保护6台电池或超过6电池电池。