增材制造 (AM),通常称为 3D 打印,是一种革命性的制造技术,在航空航天、医疗和汽车领域具有重大的工业意义。金属增材制造可以制造复杂的精密零件并修复大型部件;然而,由于缺乏工艺一致性,认证目前是一个问题。开发并集成了一种多功能、廉价的过程控制系统,减少了熔池波动的变化并提高了组件的微观结构均匀性。残余微观结构变化可以通过热流机制随几何形状的变化来解释。晶粒面积变化减少了高达 94%,成本仅为典型热像仪的一小部分,控制软件由内部编写并公开提供。这降低了过程反馈控制的实施障碍,可以在许多制造过程中实施,从聚合物增材制造到注塑成型再到惰性气体热处理。
Tignis PAICe Maker 物理驱动的 AI 计算建模平台加速了尖端半导体制造——从设备研发到可靠的高产量芯片制造能力。Tignis 支持您成功提供先进的工艺、高可靠的吞吐量、提高整体设备效率并降低拥有成本。
结果如何?Tignis 可让您的工艺工程师和设备技术人员排除故障并解决生产线中的非标准事件,改进工艺并检查技术健康和稳定性。借助 Tignis,您可以提高制造效率并实现目标 — 无论是大批量生产中的高产量、更快的周期时间还是节省成本。
DT400 是一款具有数字通信功能的 WirelessHART™ 密度变送器,专为在工业过程中直接连续在线测量液体密度而设计。DT400 WirelessHART™ 由一个浸入过程中的带有两个中继器隔膜的探头组成。探头中两个中继器隔膜之间的温度传感器可自动补偿过程中的温度变化。探头和温度传感器的生产和组装采用特殊技术,可确保将过程温度的微小变化快速通知变送器,变送器通过专用软件准确计算流体密度。根据工业过程,密度可以用密度、相对密度、°Brix、°Bé、°INPM、°GL、°API、%固体和 %浓度来表示。通过 HART® 配置器,可以在本地执行校准、监控和检查诊断。
DT400 是一款具有数字通信功能的 WirelessHART™ 密度变送器,专为在工业过程中直接连续在线测量液体密度而设计。DT400 WirelessHART™ 由一个浸入过程中的带有两个中继器隔膜的探头组成。探头中两个中继器隔膜之间的温度传感器可自动补偿过程中的温度变化。探头和温度传感器的生产和组装采用特殊技术,可确保将过程温度的微小变化快速通知变送器,变送器通过专用软件准确计算流体密度。根据工业过程,密度可以用密度、相对密度、°Brix、°Bé、°INPM、°GL、°API、%固体和 %浓度来表示。通过 HART® 配置器,可以在本地执行校准、监控和检查诊断。
DT400 是一款具有数字通信功能的 WirelessHART™ 密度变送器,专为在工业过程中直接连续在线测量液体密度而设计。DT400 WirelessHART™ 由一个浸入过程中的带有两个中继器隔膜的探头组成。探头中两个中继器隔膜之间的温度传感器可自动补偿过程中的温度变化。探头和温度传感器的生产和组装采用特殊技术,可确保将过程温度的微小变化快速通知变送器,变送器通过专用软件准确计算流体密度。根据工业过程,密度可以用密度、相对密度、°Brix、°Bé、°INPM、°GL、°API、%固体和 %浓度来表示。通过 HART® 配置器,可以在本地执行校准、监控和检查诊断。
DT400 是一款具有数字通信功能的 WirelessHART™ 密度变送器,专为工业过程中直接连续在线测量液体密度而设计。DT400 WirelessHART™ 由一个探头和两个浸入工艺中的中继器隔膜组成。位于探头中、两个中继器隔膜之间的温度传感器可自动补偿工艺过程中的温度变化。探头和温度传感器的生产和组装采用特殊技术,确保工艺温度的微小变化能够快速通知变送器,变送器通过专用软件准确计算流体密度。根据工业过程,密度可以用密度、相对密度、°Brix、°Bé、°INPM、°GL、°API、%固体和 %浓度来表示。在本地,通过 HART® 配置器,可以执行校准、监控和检查诊断。
4.4 第二次调查 ............................................................................................................. 36 4.4.1 人口统计 ...................................................................................................... 37 4.4.2 实施 SPC 时的潜在障碍 ........................................................................ 41 4.4.3 好处 ............................................................................................................. 42 4.4.4 知识 ............................................................................................................. 44 4.4.5 培训 ............................................................................................................. 49 4.4.6 文化/领导力 ............................................................................................. 51
2.1 SPC 在工业领域的健康发展 ...................................................................................... 6 2.2 在航空业的实施 .............................................................................................. 9 2.2.1 OEM .............................................................................................................. 9 2.2.2 供应基地 .............................................................................................................. 11 2.3 成功实施 ............................................................................................................. 11 2.4 失败实施 ............................................................................................................. 13 2.5 SPC 实施的成功因素 ............................................................................................. 13 2.6 SPC 实施框架 ............................................................................................. 18 2.6.1 培训 ............................................................................................................. 20 2.6.2 领导力与文化 ............................................................................................. 22 2.7 人为因素与 SPC ............................................................................................. 24 2.8 SPC 软件 ............................................................................................................. 26 2.9 SPC 的好处 ............................................................................................................. 27
1) Y. Kakinuma 等人:使用 La 掺杂 CeO 2 浆料对光学玻璃镜片进行超精密磨削,CIRP Annals,68,1 (2019) 345-348。2) S. Fujii 等人:全精密加工制造超高 Q 值晶体光学微谐振器,Optica,7,6 (2020) 694-701。3) T. Kuriya 等人:Inconel 718 定向能量沉积的凝固时间和孔隙率之间的关系先进制造技术特刊,JAMDSM,12,5 (2018) JAMDSM0104。4) M. Ueda 等人:用于快速制造的 DED(定向能量沉积)的智能工艺规划和控制,JAMDSM,14, 1 (2020) JAMSDSM0015。5) S. Sakata 等人:通过基于观察者的切削力估算避免不等齿距角平行车削中的颤动,制造科学与工程杂志 140,4 (2018) 044501。6) S. Kato 等人:利用新结构材料的节能机床的热位移和节能性能评估,日本机械工程师学会期刊,(2020 年)。 doi.org/10. 1299/transjsme.20-00002 7) K. Itoh 等人:通过 EHD 图案化开发电粘附微柱阵列,智能材料和结构,28(2019)034003。