超氧化物歧化酶1(SOD1)中的突变导致渐进性运动神经元通过有毒功能获得的特性丧失,并负责多达20%的家族性肌萎缩性侧面硬化症(ALS),或在美国所有ALS患者中大约2%的ALS患者评估了SOD1还原性降低的运动学策略,并且在所有ALS患者中均表现出了降低的运动,并改善了运动学,并改善了运动学的生存学,并具有SOD1患者的发展。表达突变体SOD1。最近对靶向SOD1的反义寡核苷酸的批准已进一步验证了SOD1作为治疗靶标。虽然减少SOD1的方法表现出不同程度的疗效,但它们依赖于无法实现最大治疗益处所必需的广泛,CNS范围的SOD1降低的直接CNS给药。我们先前报道了一系列体外和体内研究的结果,这些研究表明靶向SOD1的AAV基因治疗后,SOD1降低了。在G93A小鼠疾病模型中,我们在脊髓的整个尾声范围内证明了强大的SOD1敲低,运动性能的显着改善以及超出以前报道的核内核,肠内或肠内递送的生存延伸。在当前的研究中,我们将针对SOD1的高度有效的siRNA与静脉输送的,血脑屏障 - 透明剂tracer™capsid结合在一起,用于在NHP中进行评估。在2个月的生活期之后,我们观察到对脊髓和运动皮层的有利生物分布,从而显着降低了SOD1 mRNA。比静脉AAV递送中通常使用的新型衣壳固有的增强的BBB - 渗透率和自然的外围组织固有的固有的固定剂量,从而具有较低的剂量,从而产生了有利的安全性。这些结果表明,有效的SOD1 RNAi转基因与新型Tracer™衣壳的结合可显着减少临界脊髓和大脑区域中ALS中影响的SOD1 mRNA,并支持其持续的发展和发展到临床。
原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
量化人体运动行为首先要尽可能准确地测量和估计运动学和动力学变量。监测人体运动在功能康复、骨科、运动、辅助机器人或工业人体工程学中有着广泛的应用。当今的运动捕捉系统通常指立体摄影测量系统和实验室级测力板,它们虽然准确,但价格昂贵、需要专业技能且不便携。最近,使用惯性测量单元或 RGB 深度相机等价格实惠的传感器进行人体运动估计已成为众多研究的主题。尽管这些系统在实验室外具有巨大的应用潜力,但它们的准确性仍然有限,主要是由于固有的 IMU 漂移和视觉遮挡,而且关节运动学和动力学估计仍然难以估计。这些缺点可能解释了为什么这种系统很少用于常见的临床应用或家庭康复计划。在此背景下,本论文致力于开发一种新型、经济实惠的运动捕捉系统,该系统能够准确估计人体的三维关节状态。与以前基于视觉或惯性传感器的研究不同,所提出的方法包括结合新设计的视觉惯性传感器的数据。该系统还利用了新的实用校准方法,这种方法不需要任何外部设备,而且价格非常实惠。所有传感器数据都融合到一个受约束的扩展卡尔曼滤波器中,该滤波器利用人体的生物力学和所研究的任务来显著改善关节状态估计。这是通过结合不同类型的约束来实现的,例如关节限制、刚体和软关节约束,以及对关节轨迹和/或传感器随机偏差的时间演变进行建模。该系统估计精确的三维关节运动学的能力已通过对上臂和跑步机步态的日常生活活动的各种案例研究得到验证。已经研究了两种具有不同传感器数量和配置的不同原型。与黄金标准运动捕捉系统相比,对几名健康受试者进行的实验显示出非常令人满意的结果。总体而言,两个系统之间的平均 RMS 差异低于 4 度。当使用较少数量的传感器进行步态分析时也是如此。该系统还用于动态识别
量化人体运动行为首先要尽可能准确地测量和估计运动学和动力学变量。监测人体运动在功能康复、骨科、运动、辅助机器人或工业人体工程学方面有着广泛的应用。当今的运动捕捉系统通常是指立体摄影测量系统和实验室级测力板,它们准确但价格昂贵,需要专业技能,并且不便携。最近,使用价格实惠的传感器进行人体运动估计,例如惯性测量单元或 RGB 深度相机,已成为众多研究的主题。尽管这些系统在实验室外具有巨大的应用潜力,但它们的准确性仍然有限,主要是由于固有的 IMU 漂移和视觉遮挡,并且关节运动学和动力学估计仍然难以估计。这些缺点可能解释了为什么这种系统很少用于常见的临床应用或家庭康复计划。在此背景下,本论文涉及开发一种新的经济实惠的运动捕捉系统,该系统能够准确估计人体 3D 关节状态。与以前基于视觉或惯性传感器的研究不同,所提出的方法包括结合新设计的视觉惯性传感器的数据。该系统还利用了新的实用校准方法,这些方法不需要任何外部设备,同时仍然非常实惠。所有传感器数据都融合到一个受约束的扩展卡尔曼滤波器中,该滤波器利用人体的生物力学和所研究的任务来显着改善关节状态估计。这是通过结合不同类型的约束(例如关节限制、刚体和软关节约束)以及对关节轨迹的时间演变和/或传感器随机偏差进行建模来实现的。该系统估计精确 3D 关节运动学的能力已通过对上臂和跑步机步态的日常生活活动的各种案例研究得到验证。已经研究了两种具有不同传感器数量和配置的不同原型。与黄金标准运动捕捉系统相比,对几名健康受试者进行的实验显示出非常令人满意的结果。总体而言,两个系统之间的平均 RMS 差异低于 4 度。当使用较少数量的传感器进行步态分析时也是如此。该系统还用于