摘要:捷龙三号运载火箭是在借鉴现有长征十一号固体火箭经验的基础上,针对我国日益增长的中低轨道商业卫星发射市场需求而设计的一款商业运载火箭,具有火箭整体贮存、海陆发射通用、反应迅速、经济高效等特点,是目前国内成功飞行的运载能力最大、整流罩包层面积最大的固体运载火箭。本文介绍了该火箭的主要技术指标、总体方案,重点从海上热发射、“大罩”构型与低商业成本以及与卫星的接口等方面介绍了该火箭研制中遇到的主要难点,期望通过技术和经济的结合,为用户提供更优质的商业发射服务。
部署在酒泉卫星发射中心,配备机动式环境保障装置,具有快速反应、灵活使用、高效发射、批量储存、滚动备份等特点。2022年7月27日北京时间12时12分,Kinetica-1火箭从酒泉卫星发射中心成功将6颗卫星发射至500公里的卫星轨道。首飞载荷1068.63千克,全部卫星总重899千克。飞行过程中,各级固体发动机、伺服跟踪指令、级间分离、星箭整流罩均正常,6颗卫星准确送入预定轨道,获得过载、振动、冲击、噪声等完整遥测数据。本次首飞任务
活动日期 2024 年 7 月 22 日 活动和讲座标题 运载火箭技术客座讲座 资源名称 演讲者 Dr.Umamaheswaran R 杰出科学家、印度空间研究组织前科学秘书、载人航天中心前主任 参加人数 600 地点 Dr. MV Jayaraman 礼堂
摘要 可重复使用运载火箭 (RLV) 不仅是经济和生态可持续的太空进入的关键,也是满足对小型卫星和巨型星座日益增长的需求的一项至关重要的创新。为了确保欧洲独立的太空进入能力,ASCenSIon(推进太空进入能力 - 可重复使用性和多卫星注入)作为一个创新培训网络诞生,拥有 15 名早期研究人员、10 名受益者和 14 个遍布欧洲的合作组织。本文概述了该任务,从可重复使用级的上升到再入,包括多轨道注入和安全处置。特别关注 ASCenSIon 内部开展的有关任务分析 (MA)、制导导航和控制 (GNC) 和气动热力学 (ATD) 的活动。介绍了项目的预见方法、途径和目标。这些主题由于相互关联,需要内部创新和高水平的协作。飞行前设计能力推动了 MA 和 GNC 任务化工具与 ATD 软件相结合以测试/探索再入解决方案的必要性。这种可靠而高效的工具将需要开发用于发射器再入的 GNC 算法。此外,还解决了 RLV 轨迹优化的具体挑战,例如集成的多学科飞行器设计和轨迹分析、快速可靠的机载方法。随后,本研究的结果用于制定控制策略。此外,执行新颖的多轨道多有效载荷注入。随后,开发了一种 GNC 架构,该架构能够在精度和软着陆约束下以最佳方式将飞行器引导至目标着陆点。此外,ATD 在多个阶段影响任务概况,需要在每个设计步骤中加以考虑。由于初步设计阶段的复杂性和计算资源有限,需要使用响应时间短的替代模型来基于压力拓扑预测沿所考虑轨迹的壁面热通量。完整的概况包括发射装置为确保遵守空间碎片减缓指南而采用的任务后处置策略,以及这些策略的初步可靠性方面。本文对 ASCenSIon 工作框架内讨论的主题及其相互联系进行了初步分析,为开发 RLV 的新型尖端技术铺平了道路。关键词:可重复使用运载火箭、制导、导航和控制、可靠性、气动热力学、
○ 奥村哲平(JAXA),木村友久,松浦慎吾(MHI),增田和美(静冈科学技术大学) ○ 奥村哲平(JAXA),木村友久,松浦慎吾(MHI),増田和三(静冈理工科大学) 重交通轨道上的火箭上面级是主动碎片清除的潜在目标。 在设计主动碎片清除卫星时,火箭体的姿态是一个重要参数。 此外,由于空间等离子体充电,航天器在火箭体和卫星之间会产生电位差。 该电位差可能会在捕获时引起放电。 由于我们不知道轨道上的姿态和电位差的信息,JAXA 和三菱重工业公司开发了一种仪器,用于在火箭完成任务后测量火箭体的姿态和电位。 该仪器应该很简单,以便连续与火箭体一起配备。因此,仪器由少量传感器(姿态传感器和电位传感器)和原电池单元和通信模块组成。本次演讲将介绍该仪器的最新情况。 混雑轨道に滞留したロケット上段は轨道上の环境保存のために有效な除去対象である。ロケット上段を廃弃する取得卫星の捕获shisutemuを设计する上で、轨道上でのロケット上段の姿势が分からないので设定 计の难易度が上がる。また、宇宙プラズマ(电离层プラズマやオーrora电子)によって生じるロケット上段と推进卫星の电位差は、捕获时に静电気排水を発生させる可能性があり电気的な観点でもrisukuがある。三菱重工とJAXAは共同研究活动の元、ロケット上段がミッション结束した后、姿势や帯通话が 変化していく状况を计测するための装置を开発している。装置は未来的にいくつものロケット上段に搭装载可能なよう简素な构成となっており最低限のセンサ(姿势と帯电)と一次电池、装置及び通信で构成される。本讲演ではロケット上段モニタrinグ装置の开発状况について报告する。
摘要:本文研究了连续凸优化制导与鲁棒结构化 H ∞ 控制的耦合,用于可重复使用运载火箭 (RLV) 的下降和精确着陆。更具体地说,该制导和控制 (G&C) 系统预计将集成到非线性六自由度 RLV 控制动力学模拟器中,该模拟器涵盖配备推力矢量控制系统和可操纵平面翼的第一级火箭的气动和动力下降阶段,直到垂直着陆。进行了成本函数策略分析,以找出最有效的闭环实现方法,其中包括鲁棒控制系统和所涉及的运载火箭飞行力学。此外,还详细介绍了通过结构化 H ∞ 进行控制器合成。后者是在下降轨迹的不同点使用比例-积分-微分 (PID) 类结构构建的,并对姿态角、速率和横向体速度进行反馈。通过上述模拟器的线性分析和非线性情况验证了该架构,并通过在正常条件下以及存在扰动的情况下与基线系统比较性能和稳健性来验证 G&C 方法。总体结果表明,所提出的 G&C 系统是可重复使用发射器真实下降飞行和精确着陆阶段的相关候选系统。
未来的火箭将是可重复使用的。只有一小部分火箭会被回收,大部分将重新进入地球大气层并着陆,就像一次任务一样。可重复使用的火箭将降低成本和能源,并减少由于大量发射而产生的太空垃圾问题。完全可重复使用的火箭仍有待开发,但部分可重复使用的发射系统 ISRO 还开发了一种可重复使用的火箭,称为 RLV-TD(可重复使用的发射 V),该火箭已于 2016 年成功试飞。
PSLV 是印度第三代运载火箭,也是第一款配备液体级的运载火箭。PSLV 是印度空间研究组织的主力运载火箭,能够将卫星发射到不同类型的轨道,如太阳同步极地轨道 (SSPO)、低地球轨道 (LEO) 和地球同步转移轨道 (GTO),甚至深空任务。PSLV 已完成 48 次任务,将卫星送入不同轨道,其中包括印度的遥感和通信卫星、首次月球任务 Chandrayaan-1、火星轨道器任务 (MOM) 航天器、首次太阳任务 Aditya-L1、XPoSat、印度区域导航卫星星座 (NavIC),以及许多外国卫星。另一个值得注意的特点是 2017 年 2 月 15 日发射的 PSLV-C37,成功将 104 颗卫星部署在太阳同步轨道上。 PSLV 展示了 PS2 发动机重启、在同一任务中将卫星送入多个轨道等关键技术,以及使用废弃 PS4 级(称为 POEM)进行微重力实验的印度独特廉价太空平台。地球同步卫星运载火箭 (GSLV)