磁主动推进剂管理装置 (MAPMD) 系统旨在解决液体推进剂太空飞行中晃动造成的安全隐患。这种创新的磁主动晃动控制系统通过减少质量、改善表面波抑制和最大限度地减少体积侵入 (Santhanam 2012) 超越了传统的被动晃动挡板。在 Embry-Riddle 航空大学和 Carthage 学院合作进行的先前战斗实验中,观察到了残余晃动抑制,但由于控制力不足,有效的晃动阻尼未达到我们的预期。我们正在用多层超高磁导率金属玻璃膜重新设计磁膜,并正在开发载流线圈的优化配置,以增加磁力和磁场性能。这些进步有望将 MAPMD 系统的技术就绪水平 (TRL) 从 3 提升到 4,从而为微重力飞行测试铺平道路。 MAPMD 系统有望通过积极管理晃动动力学来提高液体推进剂太空飞行的安全性和性能。
摘要 — 现代太空运载火箭 (SLV) 外形细长,由于使用了轻质材料,通常具有柔性。这种结构柔性与传感器和执行器动力学相结合,会对 SLV 的控制产生不利影响,从而导致运载火箭不稳定,在最坏的情况下,还会导致结构故障。这项工作侧重于 SLV 的刚性和柔性动力学的建模和仿真及其与控制系统的相互作用。SpaceX 的 Falcon 9 被选为本研究的对象。使用 Ansys 中的模态分析计算柔性模式。开发了高精度非线性模拟,将柔性模式及其与刚性自由度的相互作用结合起来。此外,还开发了柔性体动力学的线性化模型,涵盖整个轨迹直到第一级分离。使用经典控制方法,开发了使 SLV 保持其期望轨迹的姿态控制器,并设计了多个滤波器来抑制柔性动力学的相互作用。设计的控制器以及滤波器在非线性模拟中实现。此外,为了证明设计的控制器的鲁棒性,进行了蒙特卡罗模拟并给出了结果。关键词 — 航天运载火箭;柔性动力学;柔性模式;增益稳定;陷波滤波器;低通滤波器;椭圆滤波器
指标,例如冷却通道中推进剂的热分解。这一点与可重复使用运载火箭的故障模式调查密切相关; - 第二,通过传感器融合和机器学习分析健康监测数据
摘要 可重复使用运载火箭 (RLV) 正逐渐成为降低太空准入成本的解决方案,并带来突破性太空应用带来的潜在好处。虽然太空是解决全球问题的理想平台,但它也带来了“适应-缓解困境”。运载火箭是唯一直接向大气层各层排放的人造物体,可重复使用性可能会带来额外的负担。虽然它可以通过回收主要部件来确保材料的合理使用,但其相对于等效一次性运载火箭 (ELV) 的潜在可持续性收益尚未量化。因此,正确理解这些对于确保可持续的太空运输设计选择至关重要。本研究回顾了目前对运载火箭环境影响和生态设计的知识状态,然后介绍了第一阶段可重复使用的不同技术的初步生命周期和大气影响评估。可重复使用性表明材料资源消耗可能在早期减少,这与推进剂选择和回收策略无关。就气候强迫而言,仅当假设氢氧、氨氧技术实现完全碳中性推进剂生产,而如果烟尘产量保持在可持续限度以下,甲氧可能实现碳中性推进剂生产,可重复使用性才是有益的。执行空中捕获回收的 VTHL 也表现出降低的气候强迫潜力。据估计,与 ELV 相比,VTVL 运载器的平流层臭氧消耗潜能将增加 18-34%,VTHL 则将增加 12-16%。此外,还发现混合比、飞行剖面、分级条件和空气动力学能力具有高敏感性,需要采用更高保真度的设计方法进行详细评估。据估计,未来大规模空间活动的发射影响也不再可以忽略不计,尽管各种设计方案中都存在一些缓解余地,而且近期将气候变化成本内部化的监管发展可能会显著影响 RLV 的商业案例。此外,高空大气影响,尤其是烟尘排放的影响,似乎主导了潜在的生命周期影响和不确定性,尤其是对于以碳氢化合物为燃料的运载火箭。这进一步加剧了基于航空和地面排放的常用但不合适的加权。这些可能会对绝对和相对比较产生重大影响,因此,必须谨慎对待本研究的结果。未来的研究应采用最先进的大气建模和适当的方法来衡量各个生命周期阶段,从而实现缓解设计,同时避免负担转移。
1. 简介 20 世纪 50 和 60 年代,美国研制了载人运载火箭,将美国国家航空航天局的宇航员送上月球,从而实现了肯尼迪总统在 20 世纪 60 年代末让美国人登上月球的承诺。在过去 50 年里,美国主导的载人航天事业尽管出现了创新的制造方法,但运载火箭核心结构的设计和制造几乎没有什么改变。现有的金属运载火箭结构制造技术,如推进剂箱、级间和适配器,包括与阿波罗时代同义的多件焊接和/或铆接施工方法。生产通常涉及使用厚板起始原料,将其加工成包含皮桁、正交或等网格加强筋的单体结构。当前的制造和设计选项往往会对系统架构产生负面影响。
currentscience.ac.in › 卷 PDF 2007年12月25日 — 2007年12月25日 运载火箭,提高安全性和可靠性。本文试图解释...数字固体推进剂火箭发动机控制系统。
小行星撞击对地球上的所有生命都构成了重大威胁,使小行星偏离撞击轨迹是减轻威胁的重要方法。动能撞击器仍是使小行星偏转的最可行方法。然而,由于发射能力的限制,质量有限的撞击器只能给小行星带来非常有限的速度增量。为了提高动能撞击器策略的偏转效率,本文提出了一种新的概念,即组装式动能撞击器(AKI),即将航天器与运载火箭末级结合在一起。即运载火箭末级将航天器送入预定轨道后,不再进行航天器与火箭的分离,航天器控制AKI撞击小行星。通过充分利用运载火箭末级的质量,撞击器的质量将得到增加,从而提高偏转效率。依据长征五号运载火箭的技术参数,为验证AKI方案的威力,设计了偏转贝努小行星的飞行任务。仿真结果表明,与经典动能撞击器(CKI,执行航天器与火箭的分离)相比,增加运载火箭末级质量可使偏转距离增加3倍以上,缩短发射准备时间至少15年。在要求相同偏转距离的情况下,增加运载火箭末级质量可使发射次数减少为CKI发射次数的1/3。AKI方案使得在10年的发射准备时间内以非核技术防御类似贝努的大型小行星成为可能。同时,单颗长征五号火箭在10年发射周期内可以将直径140米小行星的偏转距离由不足1个地球半径提高到超过1个地球半径,意味着小行星偏转任务可靠性和效率的提高。
这是一篇开放存取文章,根据知识共享署名非商业性许可条款(http://creativecommons.org /licenses/by-nc/3.0)分发,允许在任何媒体中进行无限制的非商业性使用、分发和复制,只要对原始作品进行适当的引用。
本文重点介绍滑模观测器的设计,以估计晃动质量的位置和速度状态。这些状态随后用作姿态控制器的反馈信号。简单的比例微分 (PD) 刚体控制器无法安全地执行姿态命令,否则会遇到稳定性问题,即使在稳定状态下,非零晃动质量位置也会导致旋转角度抖动。通过晃动状态反馈,即使是非最优 PD 控制器也会在有限的执行器活动下表现出平滑的响应。然而,观测器的晃动模型参数的轻微不确定性会对控制器性能产生负面影响,从而增加液体的振幅和振荡行为。需要额外的观测器来估计正确的参数值。更强大的增量非线性动态逆控制器可以改善控制器响应,但需要进一步开发,例如,在反馈回路中加入陷波滤波器。