电容的车辆路由问题(CVRP)是NP优化概率(NPO),在包括运输和物流在内的各种领域都会出现。CVRP从车辆路由问题(VRP)延伸,旨在确定一辆车辆最有效的计划,以将货物运送到一组客户,但要遵守每辆车的有限承载能力。作为可使用的解决方案的数量,当客户数量增加时,找到最佳解决方案仍然是一个重要的挑战。最近,与经典启发式方法相比,量子近似优化算法(QAOA)是一种量子古典杂种算法,在某些组合优化概率上表现出增强的性能。但是,它的能力在解决包括CVRP在内的受约束优化问题方面显着降低。此限制主要来自将给定问题编码为
光学显微镜显示蚀刻后表面清晰无特征。总之,我们描述了一种制造可靠、易于去除的高能高剂量离子注入掩模的新工艺。要注入的样品以额外的 AIGaAs 金属剥离层作为表面层,在其上通过常规光刻胶剥离技术对金属掩模进行图案化。注入后,通过使用 HCl 选择性蚀刻 AIGaAs 来去除 AIGaAs 金属剥离层和金属掩模。由于 HCl 的选择性,在去除金属掩模期间底层外延结构不会受损。这项工作得到了国家科学基金会化合物半导体微电子工程研究中心 (CDR-85-22666)、材料研究实验室 (DMR-86-12860) 和海军研究实验室 (NOOO14-88-K-2oo5) 的支持。
深部脑刺激 (DBS) 是一种通过电调节神经组织来缓解某些脑部疾病症状的外科疗法。预测电场和激活组织体积的计算模型是有效参数调整和网络分析的关键。目前,我们缺乏支持复杂电极几何形状和刺激设置的高效灵活软件实现。现有工具要么太慢(例如有限元法 - FEM),要么太简单,对基本用例的适用性有限。本文介绍了 FastField,一个用于 DBS 电场和 VTA 近似的高效开源工具箱。它根据叠加原理计算可扩展的电场近似,并根据脉冲宽度和轴突直径计算 VTA 激活模型。在基准测试和案例研究中,FastField 的求解时间约为 0.2 秒,比使用 FEM 快 ∼ 1000 倍。此外,它几乎与使用 FEM 一样准确:平均 Dice 重叠度为 92%,这大约是临床数据中发现的典型噪声水平。因此,FastField 有潜力促进有效的优化研究并支持临床应用。
摘要:癫痫是神经系统的常见疾病,及时预测癫痫发作并进行干预治疗,可以大大减少患者的意外伤害,保障患者的生命健康。本文提出了一种神经形态脉冲卷积变换器,即Spiking Conformer,用于从头皮长程脑电图(EEG)记录中检测和预测癫痫发作片段。我们报告了使用波士顿儿童医院-麻省理工学院(CHB-MIT)EEG数据集对Spiking Conformer模型的评估结果。通过利用基于脉冲的加法运算,与非脉冲模型相比,Spiking Conformer显着降低了分类计算成本。此外,我们引入了一个近似脉冲神经元层,在不牺牲准确性的情况下进一步将脉冲触发的神经元更新减少近38%。使用原始 EEG 数据作为输入,提出的 Spiking Conformer 在癫痫发作检测任务中实现了 94.9% 的平均灵敏度和 99.3% 的特异性率,在癫痫发作预测任务中实现了 96.8% 的平均灵敏度和 89.5% 的特异性率,并且与非脉冲等效模型相比,所需的操作减少了 10 倍以上。索引术语 —EEG 数据、癫痫发作检测、癫痫发作预测、脉冲神经网络、Transformer。
扩散模型在各种一代任务中实现了最新的表现。但是,他们的理论基础远远落后。本文研究了在未知的低维线性子空间上支持数据时,扩散模型的得分近似,估计和分配恢复。我们的结果提供了使用扩散模型的样本相结合范围,用于分布估计。我们表明,通过选择性选择的神经网络体系结构,得分函数可以准确地近似且有效地估计。此外,基于估计的分数函数的生成的分布会结合数据几何结构并收敛到数据分布的近距离。收敛速率取决于子空间维度,这意味着扩散模型可以规避数据环境维度的诅咒。
这是“作者接受的手稿”版本的版本:Finnah,Benedikt /Gönsch,Jochen(2021)使用倒退近似动态编程优化风力发电厂的交易决策。国际生产经济学杂志,238,108155。最终文章版本(记录的版本)可在以下网址获得:https://doi.org/10.1016/j.ijpe.2021.108155
1引言有效的流程计划是网络社区中的一个重要且研究的问题[3,5,7,12,13,23,24,27]。使用启发式方法,平衡机制和网络流量的截止日期,在调度流方面有很多工作。传统上,实施流程计划有两种广泛的方法。首先是集中式的AP PROACH,其中中央控制器从所有流中收集网络数字并计算所需的流程度[3,12,13,27,49]。第二个是在分布式的方式借助数据包或开关支持[5,7,23,44],以分布式的方式进行近似启发式方法,例如最短剩余的处理时间(SRPT)。大多数流程调度方法都集中在传统的数据中心流量上,这是爆发且短[9]。此外,传统数据中心流的到达通常是独立且无法预测的。今天,随着对基于AI的服务的需求不断增长,数据中心中的深度神经网络(DNN)培训和良好的流量已成倍增加。与传统的数据中心工作负载不同,DNN培训和微调作业具有定期的流量模式,在该模式中,每个训练迭代的开始时间都取决于之前迭代的完成,从而对流量到达时间产生依赖性[53,59,64]。我们证明,基于剩余的处理时间(即Pfabric [5],PDQ [23]和PIAS [7])的调度技术并不总是最适合安排DNN作业的最佳选择。直觉上,这是因为此类技术根据网络中当前流的状态做出本地调度决策,而无需考虑定期作业的流量到达模式。在DNN工作负载中,这种效果变得不利,其中在一个迭代中完成流量会影响随后迭代的完成时间。最近的研究,例如Muri [64]和Cassini [52,53],已经证明,对于DNN工作负载,促进交流沟通需求的时间表达到了时间表网络计划。他们将交织的想法定义为一个DNN作业的通信阶段(高网络授权)与计算阶段(低网络
高能离子的非弹性能量沉积是许多工业规模应用(如溅射和离子注入)的决定性量,但其由动态多粒子过程控制的底层物理通常仅被定性地理解。最近,对单晶靶材进行的透射实验(Phys. Rev. Lett. 124, 096601 和 Phys. Rev. A 102, 062803)揭示了沿不同轨迹的低能离子(比质子重)的非弹性能量损失的复杂能量缩放。我们使用类似蒙特卡洛的二元碰撞近似代码,并配备与撞击参数相关的非弹性能量损失模型,以评估这些情况下局部贡献对电子激发的作用。我们将计算出的轨迹的角强度分布与实验结果进行了比较,其中 50 keV 4 He 和 100 keV 29 Si 离子在飞行时间装置中传输通过单晶硅 (001) 箔(标称厚度分别为 200 和 50 nm)。在这些计算中,我们采用了不同的电子能量损失模型,即轻弹丸和重弹丸的局部和非局部形式。我们发现,无论晶体相对于入射光束的排列如何,绝大多数弹丸最终都会沿着它们的轨迹被引导。然而,只有当考虑局部电子能量损失时,模拟的二维图和能量分布才会与实验结果高度一致,其中引导会显著减少停止,特别是对于较重的弹丸。我们通过评估离子范围与随机表面层厚度的非线性和非单调缩放来证明这些影响与离子注入的相关性。
本文描述了研究结果,说明了确定结温过高的方法和选择用于测量功率 MOS 晶体管热阻过程中的近似测温特性函数对测量结果的影响。研究涉及使用间接电学方法进行的测量。介绍了三种确定晶体管结温过高的方法,分别使用近似测温特性的线性函数和非线性函数。比较了使用每种方法获得的热阻测量结果。还分析了因选择所考虑的方法而导致的测量误差。
量子近似优化算法 (QAOA) 最初是为了在量子计算机上寻找组合优化问题的近似解而提出的。然而,该算法也引起了人们对采样目的的兴趣,因为在合理的复杂性假设下,理论上证明了算法的一层已经设计出了一种超出经典计算机模拟范围的概率分布。在这方面,最近的一项研究还表明,在通用伊辛模型中,这种全局概率分布类似于纯粹但类似热的分布,其温度取决于自旋模型的内部相关性。在这项工作中,通过对该算法的干涉解释,我们扩展了单层 QAOA 生成的本征态振幅和玻尔兹曼分布的理论推导。我们还从实际和基本角度回顾了这种行为的含义。