生成网络在分销学习方面取得了巨大的经验成功。许多现有的实验表明,生成网络可以从低维易于样本分布中生成高维的复杂数据。但是,现有的现象不能被现有理论所构成。广泛持有的歧管假设推测,自然图像和信号等现实世界数据集表现出低维几何结构。在本文中,我们通过假设数据分布在低维歧管上支持数据分布来考虑这样的低维数据结构。我们证明了Wasserstein-1损失下的生成网络的统计保证。我们表明,Wasserstein-1损失取决于固有维度而不是环境数据维度,以快速的速率收敛至零。我们的理论利用了数据集中的低维几何结构,并认为生成网络的实际力量。我们不需要对数据分布的平稳性假设,这在实践中是可取的。
谱超图稀疏化是将众所周知的谱图稀疏化扩展到超图的一种尝试,在过去几年中得到了广泛的研究。对于无向超图,Kapralov、Krauthgamer、Tardos 和 Yoshida (2022) 证明了最佳 O ∗ ( n ) 大小的 ε -谱稀疏器,其中 n 是顶点数,O ∗ 抑制了 ε − 1 和 log n 因子。但对于有向超图,最佳稀疏器大小尚不清楚。我们的主要贡献是第一个为加权有向超图构造 O ∗ ( n 2 ) 大小的 ε -谱稀疏器的算法。我们的结果在 ε − 1 和 log n 因子范围内是最优的,因为即使对于有向图也存在 Ω(n2) 的下限。我们还展示了一般有向超图的 Ω(n2/ε) 的第一个非平凡下界。我们算法的基本思想借鉴了 Koutis 和 Xu (2016) 提出的基于 spanner 的普通图稀疏化。他们的迭代采样方法确实有助于在各种情况下设计稀疏化算法。为了证明这一点,我们还提出了一种类似的无向超图迭代采样算法,该算法实现了最佳大小界限之一,具有并行实现,并且可以转换为容错算法。
摘要 我们提出了 CXL-ANNS,这是一种软硬件协作方法,可实现高度可扩展的近似最近邻搜索 (ANNS) 服务。为此,我们首先通过计算快速链路 (CXL) 将 DRAM 从主机中分离出来,并将所有必要的数据集放入其内存池中。虽然这个 CXL 内存池可以使 ANNS 能够在不损失准确性的情况下处理十亿点图,但我们观察到由于 CXL 的远内存类特性,搜索性能会显著下降。为了解决这个问题,CXL-ANNS 考虑节点级关系并将预计访问最频繁的邻居缓存在本地内存中。对于未缓存的节点,CXL-ANNS 通过了解 ANNS 的图遍历行为预取一组最有可能很快访问的节点。CXL-ANNS 还了解 CXL 互连网络的架构,并让其中的不同硬件组件并行协作搜索最近邻居。为了进一步提高性能,它放宽了邻居搜索任务的执行依赖性,并通过充分利用 CXL 网络中的所有硬件来最大化搜索并行度。我们的实证评估结果表明,与我们测试的最先进的 ANNS 平台相比,CXL-ANNS 的 QPS 提高了 111.1 倍,查询延迟降低了 93.3%。在延迟和吞吐量方面,CXL-ANNS 也分别比仅具有 DRAM(具有无限存储容量)的 Oracle ANNS 系统高出 68.0% 和 3.8 倍。
在计算成像中,对象的定量物理特性是根据缩写范围的光学测量值估算的。导致散射的复杂光 - 物质相互作用受麦克斯韦方程的控制,或者在某些假设下,标量helmholtz方程式从与波长相比的物体中删除光弹性散射[1]。为了简化建模光学散射和估计对象性能的过程,已经进行了许多关于近似于标量Helmholtz方程的解决方案的研究。最原始的是投影近似,其中假定散射的场维持入射波前,例如平面或球形波,而attenua则和相位延迟会累积与穿过对象的射线的光路长度成比例的。当入射波前是平面或球形时,该假设会导致ra换变换公式,并且是计算机断层扫描的基础。当涉及到具有不可忽略的折射的相对较薄的对象时,所谓的单个散射近似(包括第一个出生和rytov方法)提供了更合适的描述[2]。随着对象变得密集且高度散射,正如预期的那样,即使是单个散射方法也开始失败,并且需要计算多个散射的模型。代表性的方法是Lippmann-Schinginger方程(LSE)[3-5],多切片方法[6-9]和梁传播方法(BPM)[10-13]和BORN SERIST [14,15]。多层和梁传播方法非常紧密地相关,重要的区别是前者是由求解的schrödinger方程激励的,而后者则是用于Helmholtz方程。可以从标量Helmholtz方程开始制定多个散射模型,但它们依赖于差异
深度信念网络(DBN)是通过堆叠受限的Boltzmann机器(RBMS,(Smolensky,1986)获得的一类生成概率模型。有关RBMS和DBNS的简要介绍,我们将读者推荐给调查文章(Fischer&Igel,2012; 2014; Mont´ufar,2016; Ghojogh等,2021)。Since their introduction, see (Hinton et al., 2006; Hinton & Salakhutdinov, 2006), DBNs have been successfully applied to a variety of prob- lems in the domains of natural language processing (Hin- ton, 2009; Jiang et al., 2018), bioinformatics (Wang & Zeng, 2013; Liang et al., 2014; Cao et al., 2016; Luo等,2019),财务市场(Shen等,2015)和计算机视觉(Abdel-Zaher&Eldeib,2016; Kamada&Ichimura,2016; 2019; Huang等,2019)。但是,我们对这些模型的理论理解是有限的。 近似近似概率分布的能力(通常称为通用近似属性)仍然是具有实值可见单元的DBN的一个开放问题,更不用说对隐藏神经元数量的近似误差进行定量理解。 作为两个实值概率密度函数之间接近度的量度,通常考虑L Q-距离或Kullback-Leibler差异。但是,我们对这些模型的理论理解是有限的。近似近似概率分布的能力(通常称为通用近似属性)仍然是具有实值可见单元的DBN的一个开放问题,更不用说对隐藏神经元数量的近似误差进行定量理解。作为两个实值概率密度函数之间接近度的量度,通常考虑L Q-距离或Kullback-Leibler差异。
大量研究表明,参数化人工神经网络 (ANN) 可以有效描述众多有趣的量子多体汉密尔顿量的基态。然而,用于更新或训练 ANN 参数的标准变分算法可能会陷入局部极小值,尤其是对于受挫系统,即使表示足够具有表现力。我们提出了一种并行调节方法,有助于摆脱这种局部极小值。这种方法涉及独立训练多个 ANN,每个模拟由具有不同“驱动器”强度的汉密尔顿量控制,类似于量子并行调节,并且它将更新步骤纳入训练中,允许交换相邻的 ANN 配置。我们研究了两类汉密尔顿量的实例,以证明我们使用受限玻尔兹曼机作为参数化 ANN 的方法的实用性。第一个实例基于置换不变汉密尔顿量,其地形阻碍了标准训练算法,使其逐渐陷入假局部最小值。第二个实例是四个氢原子排列成一个矩形,这是使用高斯基函数离散化的第二个量化电子结构哈密顿量的一个实例。我们在最小基组上研究了这个问题,尽管问题规模很小,但它表现出了假最小值,可以捕获标准变分算法。我们表明,通过量子并行回火来增强训练对于找到这些问题实例基态的良好近似值非常有用。
8超出块组成的功能50 8.1溢流力:案例研究。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 8.1.1近似度上限。。。。。。。。。。。。。。。。。。。。。。。。。51 8.1.2近似度下限。。。。。。。。。。。。。。。。。。。。。。。。。52 8.1.3 Surj的阈值度。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。52 8.1.3 Surj的阈值度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 8.2其他功能和应用程序,用于量子查询复杂性。。。。。。。。。。54 8.3 AC 0的近似度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 8.4引理证明54。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 8.4.1获得完整的引理。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。55 8.4.1获得完整的引理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。59 8.5碰撞和PTP下限。。。。。。。。。。。。。。。。。。。。。。。。。。。。。60 8.6元素独特性下限。。。。。。。。。。。。。。。。。。。。。。。。。。。。67
电动汽车(EV)被认为是传统车辆的环保选择。作为电动汽车中最关键的模块,电池是具有非线性行为的复杂电化学成分。车载电池系统的性能也受复杂的操作环境的影响。实时电动汽车电池在服务中的状态预测很棘手,但对于实现故障诊断和有助于预防危险事件至关重要。具有时间序列分析中有优势的数据驱动模型可用于从有关某些性能指标的数据中捕获降解模式并预测电池状态。变压器模型能够使用多头注意区块机制有效地捕获长期依赖性。本文介绍了标准变压器和仅编码变压器神经网络的实施,以预测电动电池的健康状况(SOH)。根据NASA卓越网站公开访问数据集的锂离子电池的分析,提取了与电荷和放电测量数据有关的28个功能。使用Pearson相关系数筛选功能。结果表明,过滤的特征可以有效提高模型的准确性以及计算效率。提出的标准变压器在SOH预测中表现出良好的性能。