研究声明I研究了海洋上的降水,云系统和耦合的海洋 - 大气边界层过程。这包括云微物理学,对降水和云层的大规模强迫以及云,降水,空气通量和耦合边界层演化如何相互影响。我还研究这些过程如何影响天气和气候变化。i收集和分析现场观察结果,使用卫星观察以及与建模团队合作,以提高过程水平的理解,发展算法,确定观察能力和需求,并使用面向过程诊断的模型进行评估。研究兴趣空气通量及其在大气和海洋边界层共同发展中的作用;使用对云和雨水,雨,卫星和序列仪的双极和单极化雷达的观测值进行气象,降水和云的研究;定量降水估计,降水分类和近地表海洋稳定性的算法;对卫星和原位观察的气象和物理海洋学过程的调查;基于观察性的大气动力学,物理海洋学以及天气尺度和中尺度气象的研究;使用原位测量值来评估和改善环境预测模型和遥感产品。教育2012-2016博士大气科学,科罗拉多州立大学顾问:史蒂文·A·鲁特里奇;联合顾问:詹姆斯·N·穆姆(俄勒冈州立大学)论文:“热带温暖池降雨的变化和对上海的影响
dia-diamond中的负电荷氮态(NV)中心是光学发射器,其水平结构对外部扰动高度敏感,这使它们成为高度局部的电场和磁场,温度和应变的出色传感器[1-5]。NV中心对于量子计算和通信[6-10]以及量子现象(例如量子纠缠和叠加)的研究非常重要[11,12]。但是,由于钻石中的高折射率(〜2.4),有效地提取NV荧光通常会引起人们的注意,这会导致钻石 - 空气接口 - 空气界面和总内部反射的高反射,对于更大的发射角度而言。以前的尝试从散装钻石中提取更多光的尝试主要涉及钻石本身的蚀刻(一个复杂的制造过程,可能会对NV的特性产生不利影响,例如旋转相干性)[13-19]或仍需要高繁殖的机油免疫性易变到iS i iS i iS iS formimentimperife conformentimplients ISS的相互作用(添加了相应的系统)(添加了相应的系统)(添加了相应的系统)[ - 23]。此外,NV中心周围钻石的精确蚀刻可能是一个重大的挑战,可能会损坏钻石的表面,从而导致化学终止的粗糙度和修改[24],从而可以降低NV中心的量子性能[25,26]。在这里,我们设计了一个基于硅的纳米级轻萃取器(NLE),它位于平坦的,未完美的钻石表面的顶部,可以增强近地表NV发射器的光输出超过35倍,与未图案相比,将光线引导到狭窄的圆锥
摘要。div>十年级的海洋学,环境和生态变化已在萨利什海(Salish Sea)报道,这是东北太平洋地区的生态富有生产力的内陆海洋,支持数百万people的经济和文化。但是,存在与物理水性质有关的大量数据差距,使得很难评估趋势和物理海水性质之间的影响途径和海洋生态系统的生产力。为了解决这些差距,我们介绍了Salish Sea(Hotssea)V1的后标,这是一种使用核心用于欧洲海洋建模(NEMO)海洋发动机的3D物理海洋学模型,其时间覆盖为1980 - 2018年。我们使用了一种实验方法来逐步评估用于边界强制性大气和海洋重新分析产品的敏感性以及模型网格的Hor-Izontal离散化(〜1.5 km)。量化了从强迫继承的偏差,并发现在一个海洋边界上应用的简单温度偏置校正因子可实质上提高模型技能。盐度和温度的评估表明,在佐治亚州的海峡中表现最好。相对较大的偏见发生在近地表水域中,尤其是在模型网格的水平分辨率的托架狭窄的子域中。但是,我们证明该模型模拟了温度异常,并且在一般同意的观察结果一般同意的是,在整个水柱上具有世俗的变暖趋势。总体而言,尽管从强迫继承了偏见HOTSSEA V1在整个域的北部和中部部分观察到了稀疏的观测值。
摘要作为氮循环中的关键中间体,亚硝酸盐参与了多种生物学途径,这些途径调节了海洋中氮的分布和可用性。在贫营养的回旋中,亚硝酸盐在舒适区的底部附近积聚,表现为最大地下,称为原发性亚硝酸盐最大值;而在亚极区域,亚硝酸盐浓度在近地表海洋中升高。到目前为止,控制这种子午线模式的机制尚不清楚。在这里,我们介绍了从亚热带Gyre延伸到北太平洋亚亚北方阵线的亚硝酸盐生产和消费速率的垂直分析曲线。我们的结果表明,在该盆地中亚硝酸盐的纬度分布受浮游植物 - 氮硝基相互作用的变化的影响。在光线充足的贫营养表面中,浮游植物通过耦合释放和重新仿真占主导地位的亚硝酸盐循环;在舒适区的下方,亚硝酸盐氧化剂的光应力减弱会导致快速离职和限制亚硝酸盐。相比之下,在硝酸盐浓度升高的亚极区域中,在同化硝酸盐还原过程中释放亚硝酸盐,而植物浮游生物和硝化剂之间的氨含量则是放松的,从而促进氨氧化。这些过程,以及氨和亚硝酸盐氧化剂的差异光灵敏度,允许亚硝酸盐的净积累。此外,我们证明了尿素氧化在形成原发性亚硝酸盐最大值并平衡海洋硝化步骤时的实质性贡献。我们的发现揭示了对海洋中亚硝酸盐循环和分布的物理生物互动控制,并有助于解散浮游植物 - 微生物相互作用对海洋氮生物地球化学的复杂作用。
各种粒子探测器在雷暴期间探测到的地球表面粒子爆发源自相对论性失控电子雪崩 (RREA),这种雪崩是由强大气电场中加速的自由电子引起的。雷雨云中两个方向相反的偶极子将电子加速到地球表面和开放空间的方向。轨道伽马射线天文台观测到的粒子爆发称为地面伽马射线闪光 (TGF),能量为几兆电子伏,有时仅达到几十兆电子伏;地面粒子探测器记录的粒子爆发称为雷暴地面增强 (TGE),能量通常达到 40-50 兆电子伏。对流层中的气球和飞机记录到伽马射线辉光(能量为几兆电子伏)。最近,高能大气物理学还包括所谓的向下 TGF (DTGF),即持续时间为几毫秒的强烈粒子爆发。众所周知的广泛空气簇射 (EAS) 源自星系质子和完全剥离的原子核与大气原子的相互作用。EAS 粒子在簇射轴周围具有非常密集的核心。然而,EAS 核心中的高能粒子由非常薄的圆盘组成(几十纳秒),并且 EAS 核心穿过的粒子探测器不会记录粒子爆发,而只会记录一个非常大的脉冲。只有中子监测器才能记录粒子爆发,它通过收集 EAS 核心粒子与土壤相互作用产生的延迟热中子来记录粒子爆发。我们讨论了最大粒子阵列中可获得的短粒子爆发与 EAS 现象之间的关系。我们证明中子监测器可以将 EAS 的“寿命”延长至几毫秒,与 DTGF 的持续时间相当。我们还讨论了使用中子监测器网络进行高能宇宙射线研究的可能性。简明语言摘要:在太空、对流层和地球表面记录了短粒子爆发和长粒子爆发。通过对粒子通量、近地表电场和闪电的协调监测,可以提出关于强烈爆发的起源及其与广泛空气簇射和大气放电的关系的假设。通过对观测数据和粒子爆发可能起源情景的分析,我们可以得出结论:爆发可以用雷鸣大气中的电子加速以及由高能质子和银河系中完全剥离的原子核加速在地球大气中形成的巨大簇射来解释。
简介 了解地球近地表环境中化学元素的丰度和空间分布对于人类的许多努力都至关重要,从定位我们未来的矿产资源到监测自然过程或人类活动引起的地球化学变化。全世界都担心环境中的化学物质对人类、动物、农业和生态系统健康的潜在破坏性影响。经济和人口增长迅速,加剧了土地退化和不受控制的城市化、工业化、集约化农业实践和含水层过度开发造成的污染等问题。这些问题和其他问题正在影响地球表面的地球化学及其从当地到全球的生命支持系统的可持续性。另一方面,全世界也关注如何确保矿产和能源资源满足不断增长的人口的需求。了解地球表面的地球化学对于确定这些资源的位置并以对环境负责的方式开发它们至关重要。系统地球化学测绘是评估和监测地球表面化学元素水平变化的最佳方法。地球化学图历来在解决一系列环境问题以及在地方到国家范围内识别潜在矿产资源方面具有重要价值。本提案是根据 IGCP 259“国际地球化学测绘”(Darnley 等人,1995 年)的规范,为非洲开发一个陆基多元素地球化学基线数据库,用于矿产资源和环境管理。这项针对非洲的项目提案符合 GEO 的愿景“实现一个未来,其中的决策和行动以协调、全面和持续的地球观测和信息为依据,造福人类”。这也将成为 AfriGEOSS (2014) 和 IUGS 倡议“资源未来世代” (IUGS, 2014) 的重要贡献。目标和动机:为矿产资源和环境管理开发陆基多元素地球化学基线数据库。非洲是世界第二大洲,也是人口第二多的大陆。其面积(包括邻近岛屿)为 30,221,532 平方公里。要开发这样的数据库,必须启动一项能力建设计划,培训所有非洲国家的专业应用地球化学家。根据维基百科,非洲由 54 个主权国家和 10 个非主权领土组成(https://en.wikipedia.org/wiki/List_of_sovereign_states_and_dependent_territories_in_Africa# Sovereign_states)。为了使非洲能够开发其丰富的矿产资源并保护其环境,它迫切需要一个协调的地球化学基线数据库以供规划和决策。活动联合负责人姓名:David B. Smith、Xueqiu Wang、Alecos Demetriades、Anna Ladenberger、Aberra Mogessie、Beneah Odhiambo 和 Gabi Schneider 主要合作组织:EuroGeoSurveys、IUGS/IAGC 全球地球化学基线工作组、UNESCO 全球尺度国际研究中心
回顾 ECMWF 自 1975 年成立以来的 37 年,数值天气预报 (NWP) 的科学和实践取得了惊人的进步。1975 年,全球 NWP 模型尚处于起步阶段,天气预报技能最多只能提前三天。ECMWF 成立的一个关键原因是通过创建欧洲集体努力,使全球 NWP 能够更快地发展。无论如何,这段时间是这项事业取得巨大进步的时期,今天我们通常预计天气预报能够提前第二周预测。科学发展、增强的观测覆盖范围和增强的计算能力都发挥了关键作用。未来会怎样?我们可以期待 2030 年的天气预报是什么样的?众所周知,预测科学和技术的未来非常困难,尤其是因为如果以最近的历史为依据,未来 18 年的技术进步基本上是不可想象的。但也许其他当前趋势更容易推断。ECMWF 全球预报模型的隐含水平网格大小(高分辨率模型目前为 16 公里)几十年来一直以相当稳定的指数速度减少。NWP 预报的客观技能指标表明,技能一直在以大约每十年一天的提前时间增加(对于有用的预报)的恒定速度增加。将这两种趋势向前推断可能很危险,但如果我们这样做,那么到 2030 年,技能应该可以延长大约两天,水平网格大小可能在几公里的范围内。另一个自然而然的问题是,未来的全球模型将能够预测什么?有趣的是,自 1992 年以来,ECMWF 不仅预测天气,还预测海浪。当然,近地表风和海浪之间有着密切的联系,但当时和现在,水手对海浪的良好预报的需求也很大。最近,由于将我们的预报扩展到月度和季节时间尺度,ECMWF 预报模型现在包括与大气模型相结合的全球海洋模型。此外,ECMWF 还开发了另外两个领域,在这些领域中,可以使用我们的预报系统和数据预测自然环境的相关方面。从科学、技术以及用户的角度来看,这些都是非常令人兴奋的举措。第一个是 MACC 项目,用于预测大气成分,包括温室气体、气溶胶、火灾和空气质量。第二个是 ECMWF 的第一个第三方活动——欧洲洪水预警系统——正在探索集水区水文的评估和预测。人们可以推测,未来的 NWP 系统可能更接近于数值环境预测系统。这些发展之所以发生,是因为这些领域的科学正在进步,也是因为可以从卫星和其他地方获得这些特性的新观测。当然,所需的科学是多学科的,物理学、化学和生物学都发挥着越来越重要的作用。起源于气象学的数据同化等技术可以并且正在扩展到环境科学的许多其他分支。未来存在许多不确定性,但 ECMWF 可以抓住机遇,推动 NWP 科学发展并提高预报技能,继续成为公认的全球中期预报领域的世界领导者。艾伦·索普
可再生能源与人工智能和数据科学理学硕士:地质与地球物理学 (READY) 学位将为您提供表征浅层地下结构所需的地质学、近地表地球物理学和计算技能,以用于广泛的可再生能源应用。为了实现全球绿色能源目标,未来二三十年,海上可再生能源项目的数量必须大幅增加。海上风电是一种海上可再生能源选择,随着技术的成熟,波浪和潮汐预计会变得越来越重要。本课程将为您提供海上数据收集经验和行业接触机会。作为一系列理学硕士课程的一部分,该课程与地球科学与工程系提供的其他课程不同,因为它将带您完成一门课程,使您能够深化与尖端数据科学、人工智能、机器学习和相关计算和观察技术相关的知识和技能,以及它们在可再生能源应用的地下结构表征中的应用。该项目目前得到了可再生能源领域多家公司的支持(包括 SSE、RWE、Ørsted、Vattenfall 和 Arup),这些公司为课程开发做出了贡献,并将组建行业咨询委员会,以确保所教授的技能与能源转型所需的技能相匹配。在开始时,您需要熟悉使用 Python 的计算机编程,并且在应用程序中使用 Python 的证据将是一个选择标准。我们将提供并建议所有成功的申请者在线完成我们的学前培训材料,以便您在课程开始前继续复习和更新您的知识。在攻读理学硕士期间,我们将通过高级编程课程发展您的知识,并通过非评估课堂测验形式的形成性反馈为您的旅程提供支持,以供自我反思和小组活动。您还将学习数据科学、数值方法和机器学习。在整个课程中,您将把这些概念应用于可再生能源应用的地下场地特征描述问题,包括沉积地质学、地貌学、工程地质灾害、高分辨率地球物理学、土力学和岩土工程。您将与其他从事应用计算机科学、数据科学和机器学习的学生一起上课和做项目。对于您的暑期研究项目,您将有机会在行业中进行可选的实习,或在帝国理工学院“内部”学者的监督下开展项目。公司项目和“内部”项目将向所有学生公布,您将被要求按顺序或偏好选择您喜欢的项目。我们鼓励您与工作人员交谈,以帮助制定和决定合适的项目。对于一些公司主办的项目,您将被要求将您的简历发送给公司主管,然后公司主管将选择他们喜欢的候选人。所有公司项目除了行业主管外,还有一位帝国理工学院主管。对于帝国理工学院分配的项目,将使用算法根据学生偏好分配项目,您将获得两位帝国理工学院主管。学生不需要自己寻找公司主管或开发项目。如果您有/符合以下条件,本课程将适合您:
我们的目标(续) 帮助美国人应对自然灾害 为防止灾害演变为灾难,早期预警是关键。卫星数据通常能提供问题的最早信号。NASA 正在利用我们自己的卫星和私人商业卫星群的先进功能,大幅提高国家预报和应对严重风暴、干旱、火灾和其他灾害的能力。NASA 为其合作伙伴和公众提供近乎实时的数据产品、预警工具和灾害地图门户,这是一个强大的灾害专用地理信息系统产品在线界面。NASA 还开发了一种先进的山体滑坡预报模型 — 让我们能够在山体滑坡发生前提供准确的预测模型,并提供卫星山体滑坡地图来指导急救人员。 NASA 正在迅速提高我们对飓风的了解。我们的 TROPICS CubeSats 和 GPM 卫星等工具收集数据以改进近期预报并加深我们对飓风强度的了解。NOAA 的国家飓风中心和联合台风警报中心使用了这些研究数据。野火发生频率和严重程度的不断增加带来了重大风险,尤其是在西部各州。NASA 的卫星和机载机队有助于估计燃料负荷和其他野火风险的关键因素。我们在火灾期间直接与美国森林服务局和其他机构合作,同时还领导研究以改善火灾预报、恢复和对社区长期影响的理解。NASA 使用传感器检测活跃火灾的热红外信号,自由公开地分享有关火灾发生地点的信息。应对“晴天洪水”和海平面上升其他方面的沿海社区依靠 NASA 的专业知识来提供未来几十年的精确预测。除了为沿海基础设施规划和灾害缓解提供信息外,NASA 还帮助国防部应对全球沿海军事设施和行动面临的风险。支持国家安全 NASA 的地球观测任务为各种安全利益提供了有价值的信息。我们的空间大地测量计划建立了地球方向参数、精确的卫星轨道和参考框架,这些是其卫星的位置、导航和计时精度的基础。同样的参考框架也支撑着 GPS 的准确性。此外,NASA 的激光反射器阵列 (LRA) 和卫星激光测距支持新一代 GPS 卫星的校准。NASA 与海军研究办公室和国家冰中心合作,帮助提高北极的态势感知能力,这对国家安全至关重要,并确定了作战区域和贸易路线。NASA 的陆地表面监测——通过结合卫星和地面观测与预报技术的先进陆地信息系统 (LIS) 模型——支持美国及其合作伙伴在世界各地的行动。支持当地社区决策卫星对温度、湿度和降水的测量有助于预测蚊媒疾病(如西尼罗河病毒 (WNV))的爆发。NASA 支持为南达科他州、路易斯安那州、俄克拉荷马州和密歇根州创建 WNV 预报工具的工作。美国各地的水资源管理者面临着在竞争激烈的需求中分配水源的重大挑战。NASA 利用卫星观测和模型在了解淡水方面处于领先地位,可以从近地表到根区再到深层含水层。例如,GRACE 卫星彻底改变了大规模水存储的监测方式,使我们能够测量美国主要含水层的排水和补给情况。美国干旱监测中心使用 GRACE 和其他卫星来评估土壤湿度。