通讯作者:Olayinka O.I通讯作者:babawaleoluseyi@gmail.com,07069387726。摘要这项研究的重点是姜黄粉提取物的近端,矿物质和植物化学组成。姜黄的近端组成显示水分,干物质,蛋白质,纤维,醚提取物,灰分和碳水化合物含量分别为5.59、94.41、8.73、7.06、5.61、5.61、5.06和67.95%。结果表明,根茎粉末含有明显和高品质的原油和碳水化合物分别为8.73%和67.95%。姜黄提取物的醚提取物和灰分揭示了植酸和草酸盐的存在。使用实验室MDethod进行了各种植物化学成分的姜黄的植物化学筛选。初步的植物化学筛选揭示了生物碱,类黄酮,糖苷,糖苷,皂苷,类固醇,苯酚,单宁,萜类化合物和花青素的存在和定量分析类胡萝卜素未进行测试。矿物质成分分析(PPM)ofturmeric Rhizome表示存在钙(3.40),钾(1.95),镁(0.90),锌(0.44),磷(1.85)和铁(0.20)。营养物质的存在证明姜黄粉可以用作食物补充剂。关键字:姜黄,近端,矿物质组成,植物化学引言植物源是一组自然生长促进剂或用作饲料添加剂的非抗生素增长促进剂,这些添加剂源自草药,香料或其他植物,它们也被称为植物源性添加剂添加剂(PFA)或Phytobobiotics。植物基因的例子是大蒜,姜黄,姜,咖喱,洋葱et.c.turmeric是一种香料,它使咖喱具有黄色。curcuma longa linn,通常称为姜黄,是南亚和东南亚的热带多年生多年生单子叶植物(Nwaekpe等,2015)。它属于Zingiberaceae的家族(Jilani等,2012)。它已被用作香料和药剂。最近,科学已经开始支持传统的主张,即姜黄含有药物特性的化合物。这些化合物称为姜黄素,最重要的是姜黄素。姜黄素是姜黄中的主要活性成分。它具有强大的抗炎作用,并且是一种非常强大的抗氧化剂。随着全世界趋向于有机生产,植物仍然是饲料补充剂的最富有,最安全的生物储备,如果经过充分探索,将有助于避免与经常使用合成医学(例如抗生素)有关的副作用问题。因此,需要在牲畜行业中替代益生菌替代抗生素,因为动物消耗会影响其产品的质量,从而影响消费者的福祉。矿物质是天然存在的化学化合物,通常是结晶形式和起源的生物形式。使用原子吸收分光光度计确定了包括钾(K),钙(Ca),钙(CA),镁(Mg)和锌(Zn),磷(P)和铁(Fe)的矿物质成分,如AOAC的方法(2005)。矿物质是人体在许多方面使用的化学成分。他们在体内许多活动中都起着重要的作用。矿物质被归类为宏(主要)和次要元素。磷是比色法。因此,这项研究的目的是确定姜黄粉的近端,矿物质和植物化学成分。姜黄根茎的材料和方法来源和制备新鲜姜黄根茎在尼日利亚北部科吉州的Kabba市场本地购买。姜黄根茎是手动清洁,剥皮并切成碎片的,它们在阴影下被空气干燥以
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年3月6日。 https://doi.org/10.1101/2025.03.05.641676 doi:Biorxiv Preprint
摘要本文通过使用基于学习的方法从有限数量的观点中解决了层析成像重建的挑战。通过使用高斯denoing算法的能力来处理复杂的优化任务,通过插入式游戏(PNP)算法的最新进步(PNP)算法显示了求解成像逆概率的希望。传统的denoising手工制作的方法产生具有可预测特征的图像,但需要复杂的参数调整并遭受缓慢的结合。相比之下,基于学习的模型可提供更快的性能和更高的重建质量,尽管它们缺乏解释性。在这项工作中,我们提出培训近端神经网络(PNN),以消除任意伪像并改善PNP算法的性能。这些网络是通过展开旨在找到最大后验(MAP)估计值的近端算法获得的,但使用学习的线性运算符在固定数量的迭代范围内获得。pnns提供了灵活性,可以通过近端算法来适应任何图像恢复任务。此外,与传统的神经网络相比,它们具有更简单的体系结构。
与单克隆免疫球蛋白沉积物(PGNMID)和轻链近端微调(LCPT)同时出现增生性肾小球肾炎,提出了独特的诊断和治疗性挑战。pGNMID的特征是肾小球中的单克隆免疫球蛋白沉积,导致增殖性肾小球病理学,而LCPT涉及近端管细胞中的单克隆轻链沉积,从而导致微管区损伤。这两种疾病均在肾脏意义的单克隆性伽马病(MGRS)下分类,但它们在单个患者中的共存极为罕见。此病例报告详细介绍了肾病综合征和肾功能不全的患者的介绍,肾脏活检均显示PGNMID和LCPT。用硼替佐米,环磷酰胺和地塞米松治疗可实现临床缓解和明显的肾功能恢复。此病例强调了肾脏活检在诊断中的关键作用,尤其是在没有可检测的单克隆蛋白的情况下,并证明了靶向治疗在管理这种复杂的肾脏病理方面的功效。这些发现有助于更好地理解MGR,并可能指导类似情况的未来治疗策略。
1土壤与景观科学,分子与生命科学学院,科学与工程学院,科廷大学,GPO盒U1987,珀斯WA 6845,澳大利亚。2分子与生命科学学院,科廷大学,GPO盒U1987,珀斯WA 6845,澳大利亚。 3 Ecohealth Network,1330 Beacon St,Suite 355a,Brookline,MA 02446,美国4土壤科学,荷兰瓦格宁根大学。2分子与生命科学学院,科廷大学,GPO盒U1987,珀斯WA 6845,澳大利亚。3 Ecohealth Network,1330 Beacon St,Suite 355a,Brookline,MA 02446,美国4土壤科学,荷兰瓦格宁根大学。
本文提出了与传统控制方法进行比较的DC-DC Boost Converter Control的基于DC-DC Boost Converter Control的基于近端策略优化(PPO)的强化学习方法。使用MATLAB Simulink共模拟对PPO算法的性能进行了评估,结果表明,实现短期结算时间和稳定性的最有效方法是将PPO算法与基于增强学习的控制方法相结合。模拟结果表明,基于RL的控制方法具有PPO算法提供了超过传统控制方法的步骤响应特征,从而增强了DC-DC增强转换器的控制。这项研究还强调了增强学习方法的固有能力,以增强增强转换器控制的性能。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
在现代操纵器交互任务中,由于环境的复杂性和不确定性,准确的对象表面建模通常很难实现。因此,改善操纵器与环境之间相互作用的适应性和稳定性已成为相互作用任务的重点之一。针对操纵器的互动任务,本文旨在在视觉指导下实现良好的力量控制。因此,基于Mujoco(带有触点的多关节动力学)物理引擎,我们为操纵器构建了交互式仿真环境,并创新地集成了基于位置的视觉伺服控制和录取控制。通过深度强化学习(DRL)中的近端策略优化(PPO)算法,有效地集成了视觉信息和力量信息,并提出了结合视觉感知的接收性控制策略。通过比较实验,将允许控制与视觉感知相结合,并将力控制的整体性能提高了68.75%。与经典的入学控制相比,峰值控制精度提高了15%。 实验结果表明,在平坦和不规则的凹面环境中,允许控制与视觉感知结合表现良好:它不仅可以准确地执行视觉构成的力控制任务,而且还可以在各种接触表面上维持施工力,并迅速适应环境变化。与经典的入学控制相比,峰值控制精度提高了15%。实验结果表明,在平坦和不规则的凹面环境中,允许控制与视觉感知结合表现良好:它不仅可以准确地执行视觉构成的力控制任务,而且还可以在各种接触表面上维持施工力,并迅速适应环境变化。在精确组装,医疗援助和服务操纵器的领域中,它可以提高操纵器在复杂和不确定的环境中的适应能力和稳定性,从而促进智能操纵器的自主操作的发展。
在其中:成功的候选人将位于比勒陀利亚大学的林业和农业生物技术研究所(Fabi,www.fabinet.up.ac.za)。由于这些是行业部门资助的项目,因此,成功的候选人将在其工作地点保持正常的办公时间。薪酬:提供两年的全额奖学金。申请流程:将以下电子邮件发送给米歇尔·施罗德(MichelleSchröder)博士(Michelle.schroder@fabi.up.ac.za),到2025年11月15日:(1)包括您的研究兴趣(2)CV的求职信,包括三个参考的联系信息,包括三个参考文献。资金由科学与创新部通过林业南非管理的森林部门创新基金提供。https://www.forestrysouthafrica.co.za/
基于视觉的机器人布的展开最近取得了巨大进步。但是,先前的工作主要依靠价值学习,并且没有完全探索基于政策的技术。最近,在大型语言模型上进行增强学习的成功表明,该政策级别算法可以通过庞大的空间来增强政策。在本文中,我们介绍了Bloth-PPO,该框架采用了基于演员批判性建筑的策略级别算法,以增强具有巨大的10 6个附加空间的预训练模型,该模型与观察到的任务相符。为此,我们将布置问题重新定义为部分观察到的马尔可夫决策过程。使用监督的培训阶段来培训我们政策的基准模型。在第二阶段,近端政策优化(PPO)用于指导观测一致的附属空间内的套头文模型。通过优化和更新策略,我们提出的方法增加了服装的表面积,以在软体操纵任务下展开的布料。实验结果表明,我们提出的框架可以进一步改善其他最先进方法的展开性能。我们的项目可从https:// vpx- ecnu.github.io/clothppo-website/获得。