全球农业产业面临着满足未来粮食需求的压力;然而,现有的作物遗传多样性可能不足以满足这一期望。基因组测序技术的进步和 300 多种植物参考基因组的可用性揭示了作物野生近缘种 (CWR) 中隐藏的遗传多样性,这可能对作物改良产生重大影响。世界各地有许多移地和原地资源,其中许多具有重要的农学特性,用户必须了解它们的可用性。在这里,我们旨在探索可用的移地/原地资源,如基因库、植物园、国家公园、保护热点和拥有 CWR 种质的清单。此外,我们重点介绍了 CWR 基因组资源的可用性和使用方面的进展,例如它们在泛基因组构建和将新基因引入作物中的贡献。我们还讨论了在农作物野生亲缘植物中使用的现代育种实验方法(例如从头驯化、基因组编辑和快速育种)的潜力和挑战,以及使用计算(例如机器学习)方法加速农作物野生亲缘植物物种在育种计划中的利用,以提高作物适应性和产量。
1 美国农业部植物科学研究中心,美国明尼苏达州圣保罗 55108 2 明尼苏达大学植物精准基因组学中心,美国明尼苏达州圣保罗 55108 3 明尼苏达大学基因组工程中心,美国明尼苏达州圣保罗 55108 4 明尼苏达大学农学与植物遗传学系,美国明尼苏达州圣保罗 55108 5 马里兰大学植物科学与景观建筑系,美国马里兰州帕克分校 6 马里兰大学生物科学与生物技术研究所,美国马里兰州罗克维尔 7 植物发育激素控制实验室。生物科学系,高级农业学校“Luiz de Queiroz”,圣保罗大学,CP 09, 13418-900,皮拉西卡巴,圣保罗,巴西 8 马克斯普朗克分子植物生理学研究所,Am Muëhlenberg 1, 14476波茨坦戈尔姆,德国 9 Departamento de Biologia Vegetal,Universidade Federal de Vic¸osa,Vic¸osa,米纳斯吉拉斯州,CEP 36570-900,巴西
1 进化实验室,遗传学系,“Luiz de Queiroz”农学院,圣保罗大学,皮拉西卡巴,巴西,2 技术分析与模拟实验室,农业工业技术和农村社会经济系,农业科学中心,圣卡洛斯联邦大学,阿拉拉斯,巴西,3 植物生物技术实验室,生物技术系,植物和动物生产,农业科学中心,圣卡洛斯联邦大学,阿拉拉斯,巴西,4 植物育种实验室,生物系,伯南布哥联邦农村大学,累西腓,巴西,5 生物技术系,植物和动物生产,圣卡洛斯联邦大学,阿拉拉斯,巴西,6 植物标本馆管理研究核心,维管植物研究中心,植物研究所,圣保罗,巴西,7 细胞和分子生物学实验室,农业核能中心,圣保罗大学,皮拉西卡巴,巴西,8 圣保罗大学农业核能中心植物育种实验室,巴西皮拉西卡巴
摘要:栽培番茄(Solanum lycopersicum)是世界上经济价值最高、种植最广泛的蔬菜作物之一。然而,番茄植株经常受到生物和非生物胁迫的影响,从而降低产量并影响果实品质。栽培番茄的表型多样性很明显,特别是园艺性状,但遗传多样性相当狭窄。针对病毒、真菌、细菌和线虫等不同病原体的主要抗病基因主要来自野生番茄品种,并渗入栽培番茄中。在这里,我们列出了在 S. pimpinellifolium、S. habrochaites、S. peruvianum、S. chilense、S. pennellii、S. galapagense、S. arcanum 和 S. neorickii 中发现的主要病虫害抗性基因,并展望了当前对番茄野生近缘种的了解与所需了解之间的差距。
盐胁迫是继干旱之后第二大破坏性非生物胁迫,限制了全球水稻产量。通过遗传增强耐盐性是一种有前途且经济有效的方法,可在盐胁迫地区提高产量。耐盐性育种具有挑战性,因为水稻对盐胁迫的反应具有遗传复杂性,受低遗传力和高 G×E 相互作用的次要基因控制。许多生理和生化因素的参与进一步复杂化了这种复杂性。绿色革命时代以提高产量为目标的密集选择和育种工作无意中导致了控制耐盐性的基因座逐渐消失,品种间遗传变异性显著降低。遗传资源利用有限和改良品种遗传基础狭窄导致现代品种对耐盐性的响应处于停滞状态。野生种是拓宽驯化水稻遗传基础的极佳遗传资源。利用未被充分利用的野生稻近缘种的新基因来恢复驯化过程中被消除的耐盐性位点,可使水稻品种获得显著的遗传增益。野生稻种 Oryza ru fi pogon 和 Oryza nivara 已被用于开发一些改良稻种,如 Jarava 和 Chinsura Nona 2。此外,增加序列信息获取途径和增强对野生近缘种耐盐性基因组学的了解,为在育种计划中部署野生稻种质提供了机会,同时克服了野生杂交中出现的交叉不亲和性和连锁阻力障碍。预育种是构建可用于育种计划的材料的另一种途径。应努力系统地收集、评估、表征和揭示野生稻的耐盐性机制
小麦是自然自花授粉的,但在实验条件下可以与各种野生草类杂交。该申请讨论了与试验地点存在的野生近缘种的性兼容性。Elymus repens(普通草)是四个试验地点中唯一常见的野生近缘种,Elymus caninus(有须草)也出现在两个试验地点。ACRE 建议,在较大的转基因试验地点及其周围,通过人工拔除、机械方法(耙地)或施用草甘膦除草剂来控制普通草、有须草、其他草类和杂草。除了在单独的转基因释放下进行试验的谷物或草类之外,不允许在试验区 20 米范围内生长任何谷物或草类。值得注意的是,申请人报告称,未发现小麦 x 披碱草之间的自然杂交种。
一般而言,作物的起源中心与其最大程度的多样性有关。然而,也应注意,作物在驯化和栽培的过程中可能会形成多个多样性中心(Harlan,1971;Harlan,1975)。提出的驯化过程长期多中心模型特别适用于栽培作物,而不适用于其野生近缘种,因为栽培作物受到的人工选择压力较大,而野生近缘种只受到自然选择压力(Allaby 等人,2008)。这反映在一种作物的不同种质种质中多种性状以阵列模式共存于多个位置,每个种质都拥有不同的感兴趣性状组合(Esquinas-Alca zar,2005)。例如,为了表示水稻的谷粒大小和颜色、植株结构、种子落粒性(但适合脱粒)、各种非生物和生物胁迫耐受性、糯粒、开花时间和生命周期(短、中、长周期)等性状的完全变异性,我们需要大量的基因型(Izawa,2022 年;Shang 等人,2022 年)。如果我们将驯化过程中选择压力的结果以性状与变异性的形式列出,每个细胞包含适当的基因型,我们将获得一系列代表不同表型性状及其内部变异性的种质。这将揭示,如果特定基因型丢失,作物植物更容易受到遗传侵蚀(与作物野生近缘种 CWR 相比)。这是因为尽管存在自然选择压力,但农作物野生亲缘植物由于缺乏人工选择压力而未能多样化(在排列模式上)。保护这些珍贵的农作物遗传资源和农作物野生亲缘植物对于通过持续的农作物改良实现粮食安全至关重要。
1207,孟加拉国 电子邮件:kashpia_tas@live.com 摘要 — 收集和表征地方基因型和地方品种是任何作物改良计划的先决条件。分子多样性和 DNA 分析显示了任何作物的确切基因蓝图。因此,该实验旨在确定一些地方茄子基因型及其野生近缘种之间的分子多样性和多态性,以供未来的育种计划使用。该实验在孟加拉国达卡的 Sher-e-Bangla 农业大学生物技术实验室进行,使用了 25 种茄子地方品种和 2 种野生近缘品种(Solanum sisymbriifolium 和 S. villosum),以研究这些基因型的分子多样性和 DNA 指纹。五个众所周知的 SSR 引物(EPSSR82、smSSR01、EM114、EM120 和 smSSR04)用于基因型的分子表征。分离出具有 27 种基因型的优质 DNA,并使用这些引物进行 PCR 扩增。扩增的 DNA 片段通过 2% 琼脂糖凝胶显影,并通过 POWERMAKER(版本 3.25)和 NTSYS-PC(版本 2.2)分析数据。总共产生了大约 10 个不同的等位基因,每个基因座的范围为 1 至 3 个等位基因,平均为 2.0 个等位基因。在引物 EPSSR82 和 smSSR01 中观察到了最多的多态性带数(2)。SSR 标记的多态性信息含量 (PIC) 范围为 0.37 至 0.67,平均值为 PIC = 0.54。基因多样性范围从 0.49(smSSR01)到 0.72(EPSSR82),平均值为 0.61。 UPGMA 方法将 27 种基因型分为两个主要簇(I 和 II)。在这些簇中,野生种 Solanum villosum 属于亚簇(IIb),显示出与其他品种的明显差异。另一方面,野生种 Solanum sisymbriifolium 与 13 种地方茄子基因型形成同一簇,显示出密切的亲缘关系。在 25 种地方茄子种质及其野生近缘种中鉴定了分子多样性和 DNA 分析。
真菌鉴定是真菌研究的基础,但传统的分子方法难以在现场快速准确地鉴定,特别是对于近缘物种。为了解决这一挑战,我们引入了一种通用的鉴定方法,称为全基因组分析(AGE)。AGE 包括两个关键步骤:生物信息学分析和实验实践。生物信息学分析在真菌物种基因组内筛选候选靶标序列,称为 Targets,并通过将它们与其他物种的基因组进行比较来确定特定 Targets。然后,使用测序或非测序技术的实验实践将验证生物信息学分析的结果。因此,AGE 为子囊菌门和担子菌门中的 13 个真菌物种中的每一个获得了超过 1,000,000 个合格 Targets。接下来,测序和基因组编辑系统验证了特定 Targets 的超特异性性能;尤其值得注意的是首次展示了来自未注释基因组区域序列的鉴定潜力。此外,通过结合快速等温扩增和硫代磷酸酯修饰引物以及无需仪器的可视化荧光方法,AGE 可以在 30 分钟内通过单管测试实现定性物种鉴定。更重要的是,AGE 在识别近缘物种和区分中药及其掺假物方面具有巨大潜力,尤其是在精确检测污染物方面。总之,AGE 为基于全基因组的真菌物种鉴定的发展打开了大门,同时也为其在植物和动物界的应用提供了指导。
引言马豆 (Macrotyloma uniflorum (Lam.) Verdc.) 是一种耐寒的半干旱热带豆类作物,对其研究甚少。尽管马豆在印度很大一部分人口的饮食中具有当前和历史重要性,但人们对它存在着根深蒂固的偏见,因为它被认为是穷人的低等食物,尤其是在印度南部 (Kadam 等人,1985 年;Ambasta,1986 年)。对这种作物的科学认识有限,这从教科书中对其地位的描述中可以看出,即使是在其主要生产国印度出版的教科书中也是如此。马豆的研究远少于地位较高的豆类,如印度豇豆 (V. radiata (L.) Wilczek、V. mungo (L.) Hepper) 或木豆 (Cajanus cajan (L.) Millsp)。事实上,虽然印度豇豆属和木豆的野生近缘种都曾接受过专题研究 (Tomooka 等人, . 2014;Khoury 等人 2015;Mallikarjuna 等人 2011)以及与野生近缘种关系的遗传学研究(Aruna 等人 2009;Kassa 等人 2012;Saxena 等人 2014)。直到最近才对马豆进行了小规模的遗传学研究(Sharma 等人 2015)。马豆之所以得名,是因为它几个世纪以来一直被用作马和牛的饲料(Watt 1889-1893),而英国人或地位较高的印度人很少食用它;