虽然大多数材料都表现出正的 CTE,但有些材料会随着温度升高而收缩,并显示出负的热膨胀系数 (NTE)。众所周知的例子包括高度取向的芳香族聚酰胺 20、石墨和石墨烯 21、金属氧化物(例如 PbTiO 3、22 ZrW 2 O 8 23)和金属有机骨架(例如氰化锌 (Zn(CN) 2 ))。24 已知 Zn(CN) 2 具有相对较大的 NTE,范围从 0-180 K 时的 19.8·10 6 K 1 到 4 400 K 时的 14·10 6 K 1。3,8,9,25–27 Zn(CN) 2 的较大 NTE 归因于金属配体键的振动模式引起锌离子的横向振动位移,从而导致相邻 Zn 离子之间的距离减小。 8–10,28–31 Zn(CN) 2 的较大 NTE 使其成为一种有趣的材料,可用于形成具有可控 CTE 的复合材料。材料的 CTE 可以通过化学处理 1,32–35 和成分变化(例如 SiO 2 等填料)来控制。36 为了达到一定的 CTE,复合材料可以加入具有 NTE 的填料(或增强材料)。6,37
本文表达的任何观点均为作者观点,而非 IZA 观点。本系列中发表的研究可能包括对政策的看法,但 IZA 不代表任何机构政策立场。IZA 研究网络致力于遵守 IZA 研究诚信指导原则。IZA 劳动经济研究所是一个独立的经济研究机构,开展劳动经济学研究,并就劳动力市场问题提供基于证据的政策建议。在德国邮政基金会的支持下,IZA 运营着世界上最大的经济学家网络,其研究旨在为我们这个时代的全球劳动力市场挑战提供答案。我们的主要目标是在学术研究、政策制定者和社会之间架起桥梁。IZA 政策文件通常代表初步工作,并被分发以鼓励讨论。引用此类文件时应说明其临时性质。修订版可直接从作者处获得。
纳米技术(纳米医学)有望帮助我们实现上述目标。各种纳米药物输送方法的发展在疾病的诊断、检测和治疗中发挥着至关重要的作用。这些纳米药物输送系统可以安全地将药物以可控的浓度转移到癌组织,避免与网状内皮系统相互影响。17 纳米载体由于尺寸与生物结构相似,对用于癌症治疗的纳米药物输送系统有重大影响;这些纳米载体可以轻松穿透细胞膜并延长循环时间。18 – 20 由于血管生成快速且有缺陷(从旧血管合成新血管),肿瘤血管的通透性增加,从而使纳米载体能够进入。此外,肿瘤内淋巴引流不畅会困住纳米载体,使它们将药物转移到癌细胞附近。这些药代动力学修改通过明确针对癌症部位并在活性持续时间内保持治疗剂在其特定缺陷部位的增加浓度来提供更好的结果。这种靶向化疗剂利用细胞凋亡和麻醉来杀死癌细胞。 21 – 23 新一代纳米载体是二维纳米材料,例如二硒化钨24 (WSe2)、硅烯25、锗烯26、二硫化钼27 (MoS2)、硒化铋28 (Bi2Se3)、二氧化锰29、过渡金属二硫属化物 (TMDs)、六方氮化硼30 (h-BN) 和玻璃纤维增强塑料 (GRP) 因其独特的物理化学性质而成为一些重要的纳米载体。 31 – 34 玻璃纤维增强塑料 (GRP) 形成了蜂窝状二维晶格结构,其中所有碳原子都是 sp2 杂化的,因而具有令人难以置信的机械和电气性能,由于具有良好的表面反应性和自由 p 电子,因此常用于光电装置、太阳能电池中的光电导材料、药物输送和医学成像。35 自由表面 p 电子可有效进行 p – p 相互作用、与难溶性药物的静电或疏水相互作用以及药物输送系统中的非共价相互作用。36 玻璃纤维增强塑料 (GRP) 与生物分子、组织和不同类型细胞的相互作用对其生物医学应用、毒性和生物相容性具有重要意义。37 玻璃纤维增强塑料 (GRP) 作为纳米载体,可以通过内吞作用快速进入细胞,并在刺激下成功地将药物释放到细胞溶胶中。 38 玻璃纤维增强聚合物中装载药物与载体的重量比为 200%,这使玻璃纤维增强聚合物成为一种比其他纳米载体更高效、更受欢迎的纳米载体。39 玻璃纤维增强聚合物对槲皮素、5-氟尿嘧啶和柔红霉素的载药能力已被研究用于癌症治疗。40 通过 DFT 计算 41,42 和分子动力学模拟研究了药物与玻璃纤维增强聚合物之间的相互作用。HPT (3 0 ,5,7-三羟基-4-甲氧基阿伐酮)及其代谢物是具有生物活性的阿伐酮类化合物,可用作抗氧化剂、抗糖尿病剂、抗癌剂、雌激素剂、抗炎剂和心脏神经保护剂。43 这种多羟基阿伐酮常见于蔬菜、柑橘幼果、西红柿、苹果和鲜花中。44 HPT 具有疏水性(水溶性差),在消化道中稳定性不足,导致口服吸收不良。45 许多研究小组正在努力通过纳米药物输送系统(如纳米制剂、
一种灵敏、低成本、响应速度快的室温气体传感器。1 目前,最常用的便携式气体传感器基于半导体金属氧化物。2,3 这种传感器技术的主要缺点之一是其工作温度通常高于 200°C,这会导致高功耗。4,5 在过去的几十年中,导电聚合物、6,7 2D 层状过渡金属二硫属化物、8 金属纳米粒子、9 石墨烯 10 和碳纳米管 11 等新型材料已被用来改善气体传感器的关键参数,如响应度、选择性、稳定性、检测限和响应/恢复时间。由于其卓越的电子和机械性能,加上对周围环境的极端敏感性,单壁碳纳米管 (SWCNT) 代表了开发新型传感器的一种非常有前途的替代方案。 12 – 19 通常,这些气体传感器采用 SWCNT-FET 设备的形式,并基于气体暴露触发的 SWCNT 电响应修改。15,17,20 – 26
在金属卤化物钙钛矿领域,Cs 2 AgBiBr 6 双钙钛矿已成为包括太阳能电池在内的各种光电应用中有毒且不稳定的卤化铅钙钛矿的有效替代品。这归因于其出色的化学稳定性、无毒性质和卓越的光电特性,包括延长的载流子寿命。23 – 26 然而,Cs 2 AgBiBr 6 太阳能电池遇到了与效率相关的挑战,主要归因于其宽的 E g 。27 – 29 用杂质离子取代的过程已被认为是增强卤化物钙钛矿光学特性的有效方法。事实上,在众多策略中,替代因其简单性和易用性而脱颖而出。此外,它还具有在不干扰 LFHDP 晶体结构的情况下修改其性质的优势。 30 – 33 Ga 离子的加入已被证实是一种很有前途的掺杂剂,通过缓解复合,开路电压 (V oc ) 和 LL 因子 (FF) 均显著提高,从而提高效率。Ga 替代已证明具有通过减少表面陷阱来改善电荷传输的潜力。34 – 37 Boudoir 等人已将 Ga 掺杂到 Mg x Zn 1 − x O 中用于光伏器件,其浓度为 0.05(5%),他们表明 Ga 的这个浓度是最佳的。38 这个特定的浓度增强了器件性能,提高了捕获电荷载流子的效率。关于这个结果,本研究中使用了 0.05 Ga 浓度。本研究提出了一种新颖的探索方法,重点是将 Ga 成功掺入一种很有前途的 LFHDP 材料 Cs 2 AgBiBr 6 中。合成的 Cs 2 Ag 0.95 Ga 0.05 BiBr 6 经过 XRD、紫外可见光谱和太阳模拟器测量的全面检查。通过 XRD 分析阐明了材料的晶体结构和相纯度,从而深入了解了 Ga 取代对钙钛矿晶格的影响。紫外可见光谱深入研究了光学特性,揭示了吸收光谱的变化表明电子结构发生了变化。此外,太阳模拟器测量评估了 Cs 2 Ag 0.95 Ga 0.05-BiBr 6 的光转换效率和性能,使其成为光伏应用的有力候选者。这些表征技术的协同应用提供了对开创性 Cs 2 Ag 0.95 Ga 0.05 BiBr 6 的结构、光学和光伏特性的整体理解。这一贡献为可持续能源技术领域不断发展的 LFHDP 领域提供了宝贵的见解。重要的是,这项研究首次全面解释了 Cs 2 Ag 0.95 Ga 0.05 BiBr 6 引起的太阳能电池性能增强。
埃尔维拉·阿泽尔·基齐·穆斯塔法耶娃。伏尔加格勒国立医科大学广场 Pavshikh Bortsov 1,伏尔加格勒,400066,俄罗斯。https://orcid.org/0009-0008-0754-711X。elvira1221@yandex.ru Nurane Azer kyzy Mustafayeva。伏尔加格勒国立医科大学广场 Pavshikh Bortsov 1,伏尔加格勒,400066,俄罗斯。https://orcid.org/0009-0005-1509-2723。mustafaevanurane@yandex.ru Dzhamilya Ruslanovna Ahmedova。联邦国家预算高等教育机构“阿斯特拉罕国立医科大学”医学院 414000,阿斯特拉罕,Bakinskaya 街。121.https://orcid.org/0009-0001-0785-9294。akhmedovadzhami99gmail.com Zaynap Azizovna Bekmurzaeva。联邦国家预算高等教育机构“阿斯特拉罕国立医科大学”医学院 414000,阿斯特拉罕,Bakinskaya 街。121.https://orcid.org/0009-0008-6573-0043。zaynap_b@mail.ru Darya Eduardovna Serdyuk。库班国立医科大学街 Sedina 4,350063,俄罗斯。https://orcid.org/0009-0005-1874-3886。s.dasha01@mail.ru Kristina Alexandrovna Konovalova。楚瓦什国立大学 428015,楚瓦什共和国,切博克萨雷,莫斯科夫斯基大街 15 号。https://orcid.org/0009-0008-3337-5083。kristinasomova590@gmail.com Khalima Timovna Stigal。萨拉托夫国立医科大学(以 V.I. 命名)拉祖莫夫斯基;拉祖莫夫斯基大学是一所公立大学,位于俄罗斯萨拉托夫州萨拉托夫市,医学院 410012,B.Kazachia 街 112,萨拉托夫。https://orcid.org/0009-0002-3081-3873。stigalhalima@gmail.com 收到日期:2022 年 2 月 20 日 接受日期:2023 年 5 月 19 日 发表日期:2024 年 6 月 12 日 DOI:http://doi.org/10.5281/zenodo。12208112
poly(ADP-核糖基)在维持基因组稳定性方面具有中心功能,包括促进DNA复制和修复。在癌细胞中,这些过程经常被破坏,因此干扰聚(ADP-核糖基)ation会加剧固有的基因组不稳定性并诱导选择性的细胞毒性。的确,基于同源重组的缺陷,聚(ADP-核糖)聚合酶(PARP)的抑制剂对治疗BRCA-突变卵巢癌的女性具有重大临床影响。然而,只有大约一半的卵巢癌在同源重组中存在缺陷,并且大多数敏感的肿瘤最终通过治疗获得了PARP抑制剂耐药性。因此,需要制定替代治疗策略,以靶向具有固有和获得抗性的PARP抑制的肿瘤。已经描述了多种新型聚(ADP-核糖)糖醇(PARG)的新型抑制剂,并在体外具有有希望的抗癌活性,与PARP抑制剂不同。在这里,我们讨论了聚(ADP-核糖基)在基因组稳定性中的作用,以及将PARG抑制剂作为PARP抑制剂治疗卵巢癌的互补策略的潜力。©2021 Elsevier Ltd.保留所有权利。
作者:Patrick G. Killeen 博士,地球物理顾问、退休研究科学家,加拿大地质调查局,渥太华 今年是十年一度的矿产勘探会议 (DMEC) 第四年担任《勘探趋势与发展》的赞助人。DMEC 组织了非常成功的勘探 '17 会议,该会议于 2017 年在多伦多举行,这是自 1967 年开始的系列会议中的第六次。今年 DMEC 的支持来自第 23 页列出的赞助公司。ETD 评论源自加拿大地质调查局 (GSC),50 多年来,GSC 的科学家每年都会编写一份公正的出版物,介绍矿产地球物理勘探的趋势和新发展。今年是 Patrick Killeen 撰写该评论的第 28 年,他最初是以 GSC 研究科学家的身份撰写的。加拿大勘探地球物理协会 (KEGS) 在 2007 年至 2016 年期间是 ETD 的赞助人。DMEC 和 KEGS 致力于推广地球物理学,特别是将其应用于石油以外的矿物勘探;培养地球物理学家的科学兴趣;并促进对该行业感兴趣的人士之间的高专业标准、友谊和合作。
3 英国卫生和社会保健部 (DHSC) 负责制定和监督改善公共健康的政策,包括减少肥胖和吸烟。英国国民医疗服务体系 (NHSE) 负责委托初级保健服务(在识别心血管疾病患者方面发挥着关键作用)并履行 NHS 长期计划中规定的一些预防承诺。综合护理委员会是负责为当地人口规划和委托医疗服务的 NHS 组织。地方初级保健网络位于综合护理委员会之下,由全科医生诊所(全科医生)组成,这些诊所与其他健康和社会保健组织合作,提供服务以改善当地人口的健康和福祉。这包括预防性干预措施以及识别和治疗有心血管疾病风险的人。地方当局负责采取他们认为适当的措施来改善其所在地区人民的健康,包括委托和提供体重管理等公共卫生服务。地方当局有法定义务为当地符合条件的人口委托 NHS 健康检查。虽然卫生和社区服务中心通过公共卫生拨款向地方当局提供健康检查资金,并保留政策责任,但地方当局要对当地居民负责开展健康检查。