抽象的能源和水短缺是城市发展过程中的两个主要问题,满足对能源和淡水的需求已成为全球可持续发展的关键。在这项研究中,我们通过在一般框架中结合了多区域输入输出(MRIO),结构路径分析(SPA)和奇异值分析(SPA)和奇异值分析(SPA)的技术,开发了基于结构的奇异值分解(SSVD)模型。SSVD方法用于探索和跟踪2012年至2015年珍珠河三角洲城市聚集(PUA)中能量水连接网络的系统属性和流动路径。我们的主要发现是:(i)诱导能源相关的水(电子水)和与水相关的能量(W-Energy)最大的最终需求是出口; (ii)深圳主要取决于其他城市的电子水和w-能源,而Huizhou是电子水和W-Energy的提供者; (iii)我们确定了10,000多个能量水集群,发现广州的电力和设备分别驱动了最大的能量水簇。我们的发现表明,监测城市集聚供应链中主要能量水消耗的关键路径和集群可以为能源和水政策提供新的见解。关键字:能量水连接,机器学习,多区域投入输出分析,珍珠河三角洲城市聚集,奇异价值分解
摘要:功能连接网络(FCN)已成为识别脑功能障碍(如自闭症谱系障碍(ASD))潜在生物标志物的常用工具。由于其重要性,研究人员提出了许多从静息态功能磁共振(rs-fMRI)数据估计FCN的方法。然而,现有的FCN估计方法通常仅捕获大脑感兴趣区域(ROI)之间的单一关系,例如线性相关、非线性相关或高阶相关,因此无法对大脑中ROI之间的复杂相互作用进行建模。此外,此类传统方法以无监督的方式估计FCN,并且估计过程独立于下游任务,这使得难以保证ASD识别的最佳性能。为了解决这些问题,本文提出了一种基于rs-fMRI的ASD分类多FCN融合框架。具体而言,对于每个受试者,我们首先使用不同的方法估计多个FCN,以从不同角度编码ROI之间的丰富相互作用。然后,我们使用标签信息(ASD 与健康对照 (HC))来学习一组融合权重,以衡量这些估计的 FCN 的重要性/区分度。最后,我们将自适应加权融合 FCN 应用于 ABIDE 数据集,以从 HC 中识别出患有 ASD 的受试者。提出的 FCN 融合框架易于实现,与传统和最先进的方法相比,可以显著提高诊断准确性。
摘要。目的。在开发脑机接口 (BCI) 时,使用短记录间隔对脑电图 (EEG) 信号进行高精度分类一直是一个难题。本文提出了一种新颖的 EEG 记录特征提取方法来解决这个问题。方法。所提出的方法基于大脑以动态方式运作的概念,并利用动态功能连接图。首先将 EEG 数据分割成功能网络维持其连接的间隔。然后定位每个识别出的段的功能连接网络,并构建图形,这些图形将用作特征。为了利用生成的图的动态特性,采用长短期记忆 (LSTM) 分类器进行分类。主要结果。从与运动执行和想象任务相关的不同持续时间的刺激后 EEG 数据中提取的特征用于测试分类器的性能。结果显示平均准确率为 85。 32% 的准确率仅使用从刺激后 500 毫秒数据中提取的特征。意义。我们的结果首次证明,使用所提出的特征提取方法,仅使用几百毫秒的数据就可以对 EEG 记录中的运动任务进行分类。这个持续时间比以前报告的要短得多。这些结果对于提高 BCI 的有效性和速度具有重要意义,特别是对于辅助技术中使用的 BCI。
金属连接网络 (MBN) 是指飞机末端(机翼、尾翼、垂直稳定器等)内各种金属部件的有意互连,以建立低电阻路径并均衡电势。MBN 确保飞机结构和设备不同部分之间的有效连接,特别是为了缓解 ESD。MBN 通过提供低电阻路径,使静电荷通过导电结构通过电离消散到环境中,或通过起落架和导电橡胶飞机轮胎直接接地,从而帮助消除静电放电事件。接合面粘合和粘合带(也称为“柔性接头”)用于物理连接金属和结构部件,例如机翼、控制面、天线和静电芯,以建立电连续性并均衡电势。这些接地连接有助于防止整个飞机中静电的积聚,这是电磁干扰管理中一项关键的安全要求和缓解因素。ESN 和 MBN 是整体电气接地和保护策略不可或缺的组成部分,它们共同提供可靠的电气环境、减轻雷击相关风险并管理 EMI。最重要的是,这两个系统对于满足乘客和环境安全要求至关重要——这是所有飞机的基本问题,但对于 eVTOL 车辆来说尤其令人担忧,因为 eVTOL 车辆必须实施更严格的接地程序,以有效地接地高压电池、控制器和电机,以保护乘客和地勤人员。
4 IBM T. J. Watson Research Center,1101 Kitchawan Rd,Yorktown Heights,NY 10598简介需要快速管理大量数据,有效地促进了对数据中心中高速数据传输的需求。 生成AI的出现进一步推动了对高速数据传输的需求,因此数据中心的近四分之三居住在数据中心中[1]。 Traffim的增长加速了对下一代网络设备的需求,以支持更高的端口密度。 但是,用于数据传输的传统铜电缆受到长距离信号降低的限制。 这又推动了大规模部署高速光学元件的要求,以连接网络设备的各个层。 今天,数据中心在很大程度上依赖于光学,但不用于短到中间(<2m)的互连。 传统的可插入光学带宽的增加速度要比数据中心的速度慢得多,并且应用要求和常规可插入光学的功能之间的差距不断增加,这一趋势是无法实现的。 共包装光学(CPO)是一种破坏性的方法,可通过通过高级包装和电子设备和光子学的优化来大大缩短电连接长度,从而提高互连带宽密度和能量效率。 计算性能的进步从摩尔的定律缩放中有益,并且在过去20年中的性能高达60000倍,如图1所示。 但是,在同一时间范围内,I/O带宽仅增加了30倍。4 IBM T. J. Watson Research Center,1101 Kitchawan Rd,Yorktown Heights,NY 10598简介需要快速管理大量数据,有效地促进了对数据中心中高速数据传输的需求。生成AI的出现进一步推动了对高速数据传输的需求,因此数据中心的近四分之三居住在数据中心中[1]。Traffim的增长加速了对下一代网络设备的需求,以支持更高的端口密度。但是,用于数据传输的传统铜电缆受到长距离信号降低的限制。这又推动了大规模部署高速光学元件的要求,以连接网络设备的各个层。今天,数据中心在很大程度上依赖于光学,但不用于短到中间(<2m)的互连。传统的可插入光学带宽的增加速度要比数据中心的速度慢得多,并且应用要求和常规可插入光学的功能之间的差距不断增加,这一趋势是无法实现的。共包装光学(CPO)是一种破坏性的方法,可通过通过高级包装和电子设备和光子学的优化来大大缩短电连接长度,从而提高互连带宽密度和能量效率。计算性能的进步从摩尔的定律缩放中有益,并且在过去20年中的性能高达60000倍,如图1所示。但是,在同一时间范围内,I/O带宽仅增加了30倍。电信号速率的增加需要显着前进才能使信号进入/退出,此外,根据应用程序,根据应用程序,还有一个伴随的挑战,可以进一步将电信号移至路由器或开关的前面板。为了解决这一挑战,该行业将通过共包装光引擎和主要
B2B 模式起源于 EDI 技术,该技术使电子发票和电子结算成为可能。它们用于保持组织之间的持续联系(使用外联网解决方案),并要求人们建立对自己品牌的信任(Ordysiński 2007)。B2B 是企业实体作为其运营和投资活动的一部分进行的业务采购市场。它由“通过互联网和其他电子信息交换系统在公司之间建立的连接网络”构成(Schulz,Orłowska 2001)。从普遍意义上讲,它是企业实体之间或给定实体内部在电子市场上进行商业交易的模式。使用企业对企业关系的组织的必要要求包括双方签署的法律协议以及业务采购市场用户的相关身份证明(Malinowski,Senkus 2015)。B2B 市场包括:在线拍卖、卖家的在线文件夹和目录、使用用户授权和控制达成的安全交易、清晰易用的目录。它提供了搜索报价的自由,并能够在互联网和外联网上跟踪采购过程,包括订单提交、收货和发票结算(Mamcarz 2008)。B2B 行业的特点是交易中的任何一方都不是消费者——自然人(Salomon 2001)。企业对企业关系主要涉及制造商、出口商、进口商、分销商和批发商。B2B 市场上的采购类型有两种:标准(办公用品、食品、计算机设备、办公服务、媒体、安全服务)和可配置(建筑、设计、营销、广告、咨询、专用机械和设备)(Malinowski、Senkus 2015)。
Banco Mundial SCN,Quadra 02,Lote A Edificio 企业金融中心 7º andar 70712-900 Brasilia,DF,巴西收件人:贷款业务 (iii) 电子交付(第 3.4 节)。银行可允许借款人通过银行的客户连接网络门户以电子方式向银行提交申请书(连同支持文件)。在下列情况下,可以选择以电子方式向银行提交申请书:(a) 借款人已根据本节第 (i) 款的规定书面指定其官员,授权其签署和提交申请书并从银行接收安全身份证明凭证(“SIDC”)以便以电子方式提交此类申请;以及 (b) 借款人指定的所有此类官员均已注册为客户连接的用户。如果银行同意,银行将向借款人提供指定官员的 SIDC。随后,指定官员可通过填写表格 2380 以电子方式递交申请,该表格可通过客户端连接 (https://clientconnection.worldbank.org) 访问。借款人可继续选择以纸质形式准备和递交申请。银行保留权利并可自行决定暂时或永久禁止借款人以电子方式递交申请。 (iv) 使用 SIDC 处理申请的条款和条件。通过指定官员使用 SIDC 并选择以电子方式递交申请,借款人通过授权签字函确认其同意:(a) 遵守与使用电子方式处理申请和支持文件有关的安全身份证明使用条款和条件(“安全身份证明使用条款和条件”);以及 (b) 促使该官员遵守这些条款和条件。 (v) 申请的最低价值(第 3.5 节)。直接付款和报销的申请最低价值为 500,000 美元。
摘要 大脑区域之间灵活的功能相互作用介导关键的认知功能。可以使用功能性磁共振成像 (fMRI) 数据测量此类相互作用,无论是瞬时(零滞后)还是基于滞后(时间滞后)的功能连接。由于 fMRI 血流动力学响应较慢,并且采样时间(秒)比底层神经动力学(毫秒)慢几个数量级,模拟研究表明,使用 Granger - Geweke 因果关系 (GC) 等方法测量的基于滞后的 fMRI 功能连接提供了虚假且不可靠的底层神经相互作用估计。对这一说法的实验验证具有挑战性,因为神经地面真实连接通常无法与 fMRI 记录同时获得。在这里,我们证明,尽管存在这些普遍存在的警告,但从 fMRI 记录估计的 GC 网络包含对任务特定认知状态进行分类的有用信息。我们使用来自 1000 名参与者的 fMRI 数据(人类连接组计划数据库)估计了瞬时和基于滞后的 GC 功能连接网络。经过瞬时或基于滞后的 GC 训练的线性分类器能够可靠地区分七种不同的任务和静息大脑状态,交叉验证准确率达到 0.80%。通过网络模拟,我们证明瞬时和基于滞后的 GC 分别利用快速和慢速时间尺度上的相互作用来实现稳健的分类。利用人类 fMRI 数据,瞬时和基于滞后的 GC 确定了互补的任务核心网络。最后,GC 连接的变化解释了各种认知分数的个体间差异。我们的研究结果表明,瞬时和基于滞后的方法揭示了大脑功能连接的互补方面,并表明使用 fMRI 估计的缓慢、定向的功能相互作用可以提供与行为相关的认知状态的有用标记。
关于能源市场管理局(EMA) 能源市场管理局 (EMA) 是新加坡贸易与工业部下属的一个法定委员会。 通过我们的工作,我们寻求打造一个可持续增长的进步能源格局。 我们的目标是确保可靠和安全的能源供应,促进能源市场的有效竞争,并在新加坡发展充满活力的能源行业。 请访问 www.ema.gov.sg 了解更多信息。 Instagram:@EMA_Singapore | 脸书:facebook.com/EnergyMarketAuthority | 推特:@EMA_sg | 领英:linkedin.com/company/energy-market-authority-ema-/ 关于国家公园局 (NParks) 国家公园局 (NParks) 负责改善和管理我们自然之城的城市生态系统。 我们是绿化、生物多样性保护以及野生动植物健康、福利和管理的牵头机构。 我们还与社区密切合作,以提高我们的生活环境质量。国家公园局管理着约 400 个公园、3,347 公顷的自然保护区、新加坡植物园、乌敏岛和姐妹岛海洋公园。此外,还有广泛的自然之路网络和超过 300 公里的公园连接网络,连接全岛的主要公园、自然区和住宅区。每年,我们在各种绿地开展超过 3,500 个教育和推广计划。国家公园局开发了一种城市生物多样性保护模型,旨在保护土地稀缺的新加坡的代表性生态系统。国家公园局还监测和协调措施,以增强我们城市景观中的生物多样性。国家公园局正与景观、园艺、兽医和动物部门的合作伙伴密切合作,以提高生产力,并为各级劳动力提供培训。提高行业能力将支持新加坡成为自然之城的愿景。欲了解更多信息,请访问 www.nparks.gov.sg 和 www.facebook.com/nparksbuzz。
摘要:本文介绍了一种节能的无人机(固定翼无人机)控制方法,该方法由三组算法组成:飞行器航线规划、飞行中控制和修正预定飞行轨迹的算法。所有算法都应考虑无人机必须避开的障碍物和无人机作业区域中的风力。基于无人机数学模型、稳定和导航算法以及 Dryden 湍流模型进行了测试,并考虑了无人机推进系统的参数。本文详细描述了如何构建用于规划无人机任务的连接网络。提出了一种确定行动领域中不同点之间实际距离的算法,该算法考虑了障碍物的存在。该算法应基于在六边形网格上确定飞行轨迹的方法。它介绍了基于一组混合整数线性问题 (MILP) 优化算法模型开发的专有无人机路径规划算法。它介绍了无人机控制器如何使用预先准备的飞行路径来监督沿预设路径飞行。它详细介绍了当代无人机的架构,这些架构具有实现自主任务的嵌入式能力,这需要将无人机系统集成到文章中提出的路线规划算法中。特别关注了在有阵风的情况下无人机任务的规划和实施方法,这有助于确定无人机飞行路线以最大限度地降低飞行器的能耗。所开发的模型在基于 ARM 处理器的计算机架构中使用硬件在环 (HIL) 技术进行测试,该技术通常用于控制无人驾驶车辆。所提出的解决方案使用两台计算机:基于实时操作系统 (RTOS) 的 FCC(飞行控制计算机)和基于 Linux 并与机器人操作系统 (ROS) 集成的 MC(任务计算机)。这项工作的一项新贡献是整合了规划和监控方法,以实施旨在最大限度地降低车辆能耗的任务,同时考虑到风力条件。