实现了在轴上硅(001)面上直接生长的InGaAs/AlGaAs量子阱激光器的室温连续波工作。首先在金属有机化学气相沉积系统中在硅衬底上生长一层厚度为420 nm、完全没有反相畴的GaAs外延层,然后在分子束外延系统中依次生长其他外延层(包括四组五周期应变层超晶格和激光结构层)。激光器采用宽条法布里-珀罗激光器,条带宽度为21.5 μm,腔长为1 mm。典型阈值电流和相应的阈值电流密度分别为186.4 mA和867 A/cm 2 。激射波长约为980 nm,斜率效率为0.097 W/A,在注入电流为400 mA时单面输出功率为22.5 mW。这一进展使得与量子阱激光器相关的硅基单片光电集成更加有前景,可行性增强。
血液的氧合水平调节了可以在头皮处的光传感器传播并随后检测到的红外光量。在人类中更突出的神经影像学方法,血液氧化水平依赖性(粗体)功能磁共振成像(fMRI)3还测量了血液动力学反应,并且已经在认知神经科学,4种翻译药物和临床实践中看到了广泛的应用。5与fMRI相比,功能性近红外光谱(FNIRS)具有更高的运动性和耐受性,更高至可比的时间分辨率,但空间分辨率较小,视野和信噪比(SNR)。6,7由于其相对优势,FNIRS领域已迅速发展为许多认知神经科学和转化医学研究领域8,9在过去几十年中。在近年来,FNIRS还用于构建非侵入性大脑 - 计算机界面(BCI)10,11个通信系统,允许使用大脑活动来控制计算机或其他外部执行器,12在神经生理学,神经疗法,神经疗法中具有潜在的应用,由于其非侵入性和潜在的性质,因此具有13-15个消费产品。传统的CW-FNIRS成像使用NIR来源的稀疏排列 - 检测器(SD)调查,导致空间分辨率明显低于fMRI。17 - 2116漫射光学层析成像(DOT)17 - 19和高密度点(HD-DOT)的最新发展,20,21,使用越来越多的NIR光源和探测器来提供目标对象的重叠空间采样,从而改善了模态的空间分辨率急剧解决方案,并具有三位生功能的范围,并具有较高的功能。16漫射光学层析成像(DOT)17 - 19和高密度点(HD-DOT)的最新发展,20,21,使用越来越多的NIR光源和探测器来提供目标对象的重叠空间采样,从而改善了模态的空间分辨率急剧解决方案,并具有三位生功能的范围,并具有较高的功能。
随着空间数据流量的不断增加,空间光通信受到越来越多的关注,作为持续开发高速光学空间网络努力的一部分,尼康和JAXA一直在开发用于调制连续波信号的单横模10 W保偏Er/Yb共掺光纤(EYDF)放大器。我们已经完成了工程模型(EM)的开发,并计划在2024年作为国际空间站光通信系统的一部分演示该放大器。EM放大器具有三级反向泵浦结构,带有抗辐射的EYDF。它还包括泵浦激光二极管和功率监控光电二极管以避免寄生激光,这两者都已被证实具有足够的抗辐射能力,以及控制驱动电路。整体尺寸为300毫米×380毫米×76毫米,重6.3公斤。在标准温度和压力条件(STP:室温,1 个大气压)下,当信号输入为 -3 dBm 时,EM 放大器在总泵浦功率为 34 W 时实现了 10 W 的光输出功率。总电插效率达到 10.1%。在 STP 下,放大器在 10 W 下实现了 2000 小时的运行时间。我们进行了机械振动测试和工作热真空测试,以确保放大器作为太空组件的可靠性。在工作温度范围的上限和下限 ± 0 和 + 50 °C 下,输出功率和偏振消光比 (PER) 分别为 > 10 W 和 > 16 dB,而放大增益或 PER 没有任何下降。
摘要:风力涡轮机叶片 (WTB) 是由复合多层材料结构组成的关键子系统。WTB 检查是一个复杂且劳动密集型的过程,其失败会给资产所有者带来巨大的能源和经济损失。在本文中,我们提出了一种用于叶片复合材料的新型无损评估方法,该方法采用调频连续波 (FMCW) 雷达、机器人和机器学习 (ML) 分析。我们表明,使用 FMCW 光栅扫描数据,我们的 ML 算法(SVM、BP、决策树和朴素贝叶斯)可以区分不同类型的复合材料,准确率超过 97.5%。SVM 算法的性能最佳,准确率为 94.3%。此外,所提出的方法还可以获得检测表面缺陷的可靠结果:层间孔隙率,总体准确率为 80%。特别是,SVM 分类器的最高准确率达到 92.5% 至 98.9%。我们还展示了检测复合材料 WT 结构中 1 毫米差异的气孔的能力,使用 SVM 的准确率为 94.1%,使用 Naïve Bayes 的准确率为 84.5%。最后,我们创建了物理复合材料样品的数字孪生,以支持 FMCW 数据相对于复合材料样品特性的集成和定性分析。所提出的方法探索了一种用于复合材料非接触表面和地下的新型传感方式,并为开发替代的、更具成本效益的检测方法提供了见解
行为9-11并研究/实现脑机接口。12-14 fNIRS仪器特别适用于表征与听觉系统相关的功能性血流动力学变化。使用临床成像方式(例如X射线计算机断层扫描或磁共振成像)通常很难测量响应听觉皮层激活的大脑活动,因为仪器声音会增加背景噪音,这可能会破坏向受试者呈现的听觉刺激,从而严重影响实验结果。部分由于这些优势,最近的几项研究7、15-17已经使用商用 fNIRS 仪器来表征人类听觉皮层的功能刺激。例如,Chen 等人7 测量了听觉皮层对 440 和 554 Hz 纯音以及 1000 Hz 调频或颤音的血流动力学反应。 Hong 和 Santosa 16 进行了类似的实验,研究“自然”声音刺激(如英语和非英语单词、恼人的声音和自然声音)的血流动力学反应。Issa 等人 18 测量了在呈现 750 和 8000 Hz 的纯音刺激以及宽带噪声时听觉皮层的血流动力学变化。这些实验的主要目标是测量或成像听觉皮层内脑组织氧合的局部变化 - 这可以被认为是 fNIRS 实验的基本问题。人类的初级听觉皮层跨度约为 1650 mm3,位于颞叶的 Heschl 回内,并沿多个功能维度组织,其中最突出的是音调定位。19、20 因此,我们预计纯音刺激将激活听觉皮层的更局部区域,而宽带噪声将激活更广泛的区域。 19、21、22
Si 基光子集成电路 (PIC) 将光学活性元件单片集成在芯片上,正在改变下一代信息和通信技术基础设施 1。在寻找基本的直接带隙的过程中,人们对 IV 族半导体合金进行了深入研究,以获得电泵浦连续波 Si 基激光器。沿着这条路径,已经证明可以通过化学计量和应变工程将新开发的 GeSn/SiGeSn 异质结构的电子带结构调整为直接带隙量子结构,从而为激光提供光增益 2。在本文中,我们介绍了一种多功能电泵浦激光器,它在低温下发射近红外波长为 2.35 µm 的低阈值电流为 4 mA(5 kA/cm 2)。它基于 6 周期 SiGeSn/GeSn 多量子阱结构,沉积在具有弛豫 Ge 缓冲层的 Si 衬底上。通过定义一个圆形台面结构来制作小尺寸微盘腔激光器,该结构蚀刻穿过层堆栈直至 Si 衬底。随后,通过去除此区域的 Ge 缓冲层,将盘的边缘蚀刻 900 nm。剩余的 Ge 基座用作 p 接触区以及激光器的散热器(图 1 a、b)。在这个简单的结构中,由于 SiGeSn 的导热性较差,有源区的实际晶格温度比热浴 T b 高约 60K。但是,激光器在 T b =40K 以下以连续波 (CW) 模式工作,但也可以在 T b =77K 时以直接调制模式高效工作至 ns 脉冲。
和处理7,范围8,微波光子学9,双弯曲光谱学10和天文学光谱仪校准11。这些孤子作为Lugiato – Lefever方程的局部溶液12,13(LLE)出现,可以在具有高质量因素的谐振器中观察到。CSS的出现依赖于一侧异常的群体色散(GVD)和Kerr非线性之间的双重平衡,以及在另一侧的损耗和能量注入(通常是通过连续波(CW)激光泵)之间的双重平衡。由于它们的高质量因子和紧凑的设计(数百微米的空腔长度),微孔子在过去十年中引起了显着的注意力。De- spite these impressive performances, launching and collect- ing light in these resonators can be challenging, requiring ad- vanced fiber coupling devices such as a prism fiber taper 15 or advanced coupling methods for chip microresonators 16 , and while progresses on packaging are on going, it is still an ob- stacle for fiber applications.在谐振器中产生OFC的另一种方法是,在长度为117米的全纤维环腔中,其有效质量因子可以通过在腔体18中包括一个放大器来达到数百万。使用这些谐振器架构获得的光谱延伸到几个THZ上,几乎就像微孔子一样,但它们具有两个主要缺点。首先,线间距在MHz范围内,该范围限制了应用程序范围(主要在GHz范围14中),其次,它们不是Com-
摘要:Terahertz(THZ)连续波(CW)光谱系统可以通过拍摄高性能电信(1530-1565 nm)激光器来提供极高的光谱分辨率。然而,这些系统中的典型THZ CW检测器使用狭窄的带隙光电导体,这些光接合器需要精心生长并产生相对较大的检测器噪声。在这里,我们证明了纳米结构的低温种植GAA(LT-GAAS)的跨表情中的两步光子吸收,该元面可在大约一个picsecond中切换光导率。我们表明,尽管带隙是电信激光光子能量的两倍,但LT-GAA可以用作CW THZ检测器中的超快光电自动导体。元图设计利用了LT GAAS谐振器中的MIE模式,而THZ检测器的金属电极可以设计以支持附加的光子模式,从而进一步增加了所需波长下的光电导率。
对于 N 的数据集,结果表明 F/F S 的比率必须具有等效比率 k 0 /N,该比率为有理数。如果不满足此条件,则会出现频率区间的模糊。DAS 系统剩下三个选项。首先,它可以使用窗口补偿非相干采样引起的频率伪影。但是,如果 DAS 系统的寄存器和计算能力有限,则非相干采样的补偿只能是微不足道的。第二种选择是让 DAS 系统固定系统的采样频率,计算连续波的频率,从而得到等效比率 F/F S = k 0 /N,该比率为有理数,然后将输入连续波调整到计算出的频率。第三种选择是让 DAS 系统固定连续波频率,计算系统的采样频率,得到合理的等效比 F/F S = k 0 /N,并将采样频率调整为计算出的频率。后两种选择是大多数 DAS 系统的实用方法。
对于 N 的数据集,结果表明 F/F S 的比率必须具有等效比率 k 0 /N,该比率为有理数。如果不满足此条件,则会出现频率区间的模糊。DAS 系统剩下三个选项。首先,它可以使用窗口补偿非相干采样引起的频率伪影。但是,如果 DAS 系统的寄存器和计算能力有限,则非相干采样的补偿只能是微不足道的。第二种选择是让 DAS 系统固定系统的采样频率,计算连续波的频率,从而得到等效比率 F/F S = k 0 /N,该比率为有理数,然后将输入连续波调整到计算出的频率。第三种选择是让 DAS 系统固定连续波频率,计算系统的采样频率,得到合理的等效比 F/F S = k 0 /N,并将采样频率调整为计算出的频率。后两种选择是大多数 DAS 系统的实用方法。