大学。东京,日本东京都文京区本乡 7-3-1,邮编 113-0033 通讯作者:Hiroshi Nishimasu,nisimasu@bs.s.u-tokyo.ac.jp 电话:+81-3-5841-4391 收稿日期:2018 年 1 月 8 日/修订日期:2018 年 2 月 17 日/接受日期:2018 年 2 月 17 日 摘要 RNA 引导的核酸内切酶 Cas9 参与原核生物 CRISPR-Cas 过继免疫系统,可与引导 RNA 结合并切割与 RNA 引导互补的双链 DNA。近年来,Cas9 已被用作从基础研究到临床应用等广泛领域的多功能基因组编辑工具。然而,Cas9 识别和切割 DNA 的分子机制尚不清楚,其在基因组编辑中的应用仍有许多问题有待解决。我们阐明了最广泛用于基因组编辑的 S. pyogenes Cas9 与向导 RNA 及其靶 DNA 复合的晶体结构,从而首次深入了解了 Cas9 介导的 DNA 切割机制。此外,我们还解决了来自三种不同细菌的 Cas9 核酸酶和 Cas12a (Cpf1) 核酸酶的晶体结构,它们也用于基因组编辑。总的来说,这些结构研究阐明了 CRISPR-Cas 核酸酶的机制趋同和发散,为
对二维(2D)材料(例如石墨烯,硅和德国烯)的摘要研究,由于其独特的电子和机械性能,引起了极大的关注。该迷你审查采用密度功能理论(DFT)来比较这三种材料的电子特性。结果表明,通过SP²杂交的石墨烯具有出色的电导率和高机械强度,晶格常数为2.46Å。硅和德国烯分别由硅和锗原子组成,由于它们能够通过各种方法张开带隙,因此具有更高的表面反应性和高级电子应用的潜力。硅的晶格常数为3.90Å,电负性为1.9,而德国烯的晶格常数为3.97Å,电负性为2.01。硅和石墨烯的带状结构没有表现出带隙,在p轨道中具有主导状态,而德国烯显示半导体行为,在K点处有零带隙的开口。石墨烯显示出高的平面刚度,而硅和德国烯具有各自的刚度,石墨烯和硅脆性是脆性,而德国烯则是延性的。这项研究提供了对石墨烯,硅和德国烯电子特性的基本差异的见解,以及它们在半导体技术和高速,低能电子设备中的潜在应用。
miniplanes.fr › images › pdf › noti... PDF 2000-02-01 — 2000-02-01 33 可以轻松控制飞机在低速时保持稳定的飞行姿态。 ... 数字伺服器效果更好精度、可靠性、功率和强度!24 页