图3。增加MGCL₂浓度对目标下90%的扩增的影响。富裕的s。金黄色葡萄球菌gDNA靶序列使用Phusion Plus Plus DNA聚合酶在Proflex PCR系统上进行扩增。每个20 µL反应含有10 ng的s。金黄色葡萄球菌和另外1 mm,1.5 mm,2 mm或2.5 mmmgcl₂。热循环条件:98°C的30秒;在98°C,最佳退火温度下10秒的10秒循环(表4),在64°C时为1分钟/kb;在64°C下5分钟。PCR产品以2%E-Gel 48含Sybr安全染色的琼脂糖凝胶运行。车道M:E-GEL 1 KB Plus Express DNA梯子。
摘要:与化学计量简单的氮化铝 (AlN) 相比,锆钛酸铅薄膜 (PZT) 具有优异的压电和介电性能,是先进微机电系统 (MEMS) 器件中另一种有希望的候选材料。大面积 PZT 薄膜的制造具有挑战性,但需求迫切。因此,有必要建立合成参数与特定性能之间的关系。与溶胶-凝胶和脉冲激光沉积技术相比,本综述重点介绍了磁控溅射技术,因为它具有高度的可行性和可控性。在本文中,我们概述了 PZT 薄膜的微观结构特征、合成参数(如基底、沉积温度、气体气氛和退火温度等)和功能特性(如介电、压电和铁电等)。本综述特别强调了这些影响因素的依赖性,为研究人员通过磁控溅射技术获取具有预期性能的PZT薄膜提供实验指导。
在二氧化硅 - 二氧化胶玻璃和玻璃陶瓷中研究了材料结构在Ag和TB 3+ /Yb 3+离子之间的能量转移中的作用。通过溶胶 - 凝胶和浸入涂层进行TB 3+和YB 3+掺杂的二氧化硅氧化锌层的制备,然后进行热退火。通过控制退火温度从700°C下的全无定形玻璃控制到1000°C的玻璃陶瓷来获得氧化锆纳米晶体的沉淀。由稀土掺杂的氧化氧化纳米晶体(四方或立方)的不同结构结构,并与TB 3+ /Yb 3+光学性质进行了研究。此外,在激发带的强度和宽泛的情况下,通过离子 - 交换引入Ag codoping,获得了明显的光致发光增强,覆盖了整个UV区域和紫罗兰色区域的一部分。Ag敏感的TB 3+ /Yb 3+掺杂的二氧化硅氧化循环玻璃陶瓷被证明是能源相关应用的潜在候选物,例如可见光和NIR光谱区域中太阳能电池,激光器和光电池(LED)的光谱转换层。
高强度低合金(HSLA)钢已被广泛用作汽车的结构零件。由于需要减轻体重和抗腐烂的白色身体,因此镀锌HSLA钢的需求最高,高度为550MPa等级。在这项研究中,开发了具有550MPa屈服强度的镀锌HSLA钢。讨论了晶粒尺寸和降水对微结构和强度的影响以及镀锌冷条的锌涂层质量。结果表明,通过采用细粒度加强和降水加强,可以实现550MPa屈服强度和13%伸长的机械性能。可以通过控制冷滚动和退火过程来实现钢的理想微观结构,这导致晶粒尺寸为2〜5μm,沉淀物在矩阵中直径为20〜30nm。还表明,退火温度对微观结构和机械性能有重大影响,而冷滚动和缓慢冷却温度的降低比没有影响。此外,具有550MPA级的热浸镀锌HSLA钢具有良好的涂层质量。
图 4:a) Ge 15 Te 85 玻璃在 105 °C 下退火一段时间后进行的电阻率上扫描测量得出的虚拟温度 𝑇𝑇 𝑓𝑓 𝜌𝜌 的演变。𝑇𝑇 𝑓𝑓 𝜌𝜌 数据与 TNM-AG 模型(黑线)精确拟合,并长时间向退火温度 105 °C 收敛,从而证实了稳定性。b) 将在 105 °C 恒温保持期间获得的电阻率数据(浅蓝色点)与从 𝑇𝑇 𝑓𝑓 𝜌𝜌(红色圆圈)和 TNM-AG 模型(黑线)计算出的电阻率值进行比较(a)。实验电阻率数据与玻璃松弛模型的预测结果非常吻合。请注意,初始 𝑇𝑇 𝑓𝑓 𝜌𝜌 低于图 2 所示的 𝑇𝑇 𝑓𝑓 𝐻𝐻。这是由于在 vdP 样品上沉积覆盖层期间向硫族化物引入了热量。
摘要。在未来的融合设备(例如ITER或DEMO)上为NNBI系统的离子源开发是基于负氢离子的表面产生。因此,低工作函数转换器表面是强制性的。除了在离子源操作过程中连续注射的最新技术外,还需要替代材料来克服挥发性CS涂层的缺点。在这项工作中,研究了C12A7电气材料,涉及离子源相关条件下氢和血浆环境中的功能行为。活动期间获得的最低测量工作功能为2。9±0。1 eV,具有优化潜力,可在更好的真空条件下降低值和更高的退火温度。在血浆操作过程中偏见样品对工作功能性能的影响很大,这取决于极性和施加的偏差潜力。该实验中使用的C12A7电气获得的最小工作函数大大高于原位促进(〜2 eV)所获得的最小工作函数,但样品在血浆弹性方面表现出了有希望的特性。
在本研究中,我们利用偏振相关角分辨光电子能谱 (ARPES) 研究了六方 MnTe (0001) 块体单晶的电子能带结构。样品通过混合化学计量量的细粉 Mn 和 Te 来制备,并在 10 -5 pa 的真空石英安瓿中密封。我们通过固相反应法生长 MnTe 单晶并将其切割成 (0001) 面。为了获得干净的表面,我们对样品进行了溅射和退火。我们使用 2kV 的束流能量进行溅射,退火温度为 330 摄氏度。通过反复的溅射和退火循环,我们最终得到了干净的表面。通过俄歇电子能谱检查表面的杂质,并通过尖锐的六方低能电子衍射 (LEED) 斑点确认了长程有序。偏振相关 ARPES 实验是在配备 ASTRAIOS 电子分析仪的 HiSOR BL-9A 上进行的。我们将光子能量设置为 40 eV,温度设置为 200K。入射光的偏振方向由波荡器磁铁配置控制。
研究了快速热退火对射频溅射系统沉积的高 k HfO 2 超薄膜结构和电学性能的影响。分别在氧气和氮气环境下研究了薄膜特性以获得最佳快速热退火温度,以获得作为 MOS 器件结构的最佳电学效果。使用傅里叶变换红外光谱 (FT-IR) 详细研究了温度诱导退火对 HfO 2 /Si 界面的影响。分别通过椭圆偏振仪、XRD 和 AFM 研究了薄膜厚度、成分和微观结构,并显示了退火对这些参数的影响。采用 Si/HfO 2 /Si MOS 电容器结构研究了退火电介质薄膜的 I-V 和 C-V 特性。结果表明,在氮气环境下采用快速热退火 (RTA) 的 HfO 2 /Si 堆栈比在氧气环境下表现出更好的物理和电学性能。结果表明,RTA 改善了 HfO 2 /Si 的界面特性和 HfO 2 超薄膜的致密化。在氮气和氧气中分别以 700 C 退火后,沉积的薄膜为非晶态和正交晶系。我们发现,氮气退火样品的等效氧化物厚度、界面态密度、电容-电压滞后和漏电流均有所降低;此外,在正电压偏置和温度应力下,电荷俘获也几乎可以忽略不计。本文对结果进行了介绍和讨论。2011 Elsevier BV 保留所有权利。
在二氧化硅 - 二氧化胶玻璃和玻璃陶瓷中研究了材料结构在Ag和TB 3+ /Yb 3+离子之间的能量转移中的作用。通过溶胶 - 凝胶和浸入涂层进行TB 3+和YB 3+掺杂的二氧化硅氧化锌层的制备,然后进行热退火。通过控制退火温度从700°C下的全无定形玻璃控制到1000°C的玻璃陶瓷来获得氧化锆纳米晶体的沉淀。由稀土掺杂的氧化氧化纳米晶体(四方或立方)的不同结构结构,并与TB 3+ /Yb 3+光学性质进行了研究。此外,在激发带的强度和宽泛的情况下,通过离子 - 交换引入Ag codoping,获得了明显的光致发光增强,覆盖了整个UV区域和紫罗兰色区域的一部分。Ag敏感的TB 3+ /Yb 3+掺杂的二氧化硅氧化循环玻璃陶瓷被证明是能源相关应用的潜在候选物,例如可见光和NIR光谱区域中太阳能电池,激光器和光电池(LED)的光谱转换层。
摘要:氧化锌(ZnO)是一种众所周知的半导体材料,由于其出色的电气,机械和独特的光学特性。ZnO纳米颗粒被广泛用于微电源和光电设备的工业规模生产,包括金属氧化物半导体(MOS)气体传感器,光发射二极管,晶体管,晶体管,电容器和太阳能电池。这项研究提出了通过静电纺丝技术优化纳米化ZnO的合成参数。盒子 - Behnken设计(BB)已使用响应表面方法(RSM)应用,以优化选定的静电纺丝和烧结条件。成功研究了施加电压,尖端到收集器距离和退火温度对ZnO颗粒尺寸的影响。扫描电子显微镜(SEM)和透射电子显微镜(TEM)图像确保了乙酸聚乙烯基吡咯烷酮 - 乙酸锌(PVP-ZNAC)的形成,并在退火后纳米结构的ZnO。X射线衍射(XRD)模式表示具有高结晶度的ZnO的六角形结构的纯相。最小尺寸的ZnO纳米颗粒以16 kV的恒定电位合成,收集器和喷嘴之间的距离为12 cm,流量为1 ml/h,钙化温度为600°C,结果表明,纳米化的ZnO表明ZnO具有尺寸和形式的精确浓度,可以通过vary和Sinoring sinoring sinoring和Sinoring sinering snerurnning andersranting sinering anderstrance andersranting sinering andering sinering andoring sinering andornning。