为本指南的目的,将参考联邦版本的法案。高级操作飞行员证书:根据加拿大交通部定义的标准,高级操作所需的证书。飞机:任何能够从空气反应中获得大气支撑的机器,包括火箭。适航性:遥控飞机系统(包括飞机、机身、发动机、螺旋桨、附件、设备和控制站)符合其型号证书(设计)(如适用)并处于安全运行状态的状态。适航认证:一个可重复的过程,导致记录在案的决定,即飞机系统已被判定为适航。旨在验证飞机系统是否可以在其描述和记录的运行范围内由机队飞行员安全维护和安全操作。加拿大大西洋近海石油区:加拿大大西洋近海石油区是指《协议法》所定义的近海区域。自动化飞机:能够执行预定义流程或事件的飞机,需要飞行员启动和/或干预。自动驾驶飞机:能够使用机载决策能力执行流程或任务的飞机。飞机的设计不允许飞行员干预飞行管理。自主操作:飞机在飞行管理过程中无需飞行员干预的操作。
[1] MIL-HDBK-516C,适航认证标准,2014 年 12 月 12 日 [2] MIL-STD-882D/E,系统安全计划,2000 年 2 月 10 日/2012 年 4 月 23 日 [3] AWB-1011A,适航专家认可,2014 年 9 月 4 日 [4] IEEE 12207,系统和软件工程 – 软件生命周期过程,2008 年 [5] MIL-STD-498,软件开发和文档,1994 年 12 月 5 日 [6] DOD-STD-2167A,国防系统软件开发,1988 年 2 月 29 日 [7] DO-178B/C,机载系统和设备认证中的软件注意事项,1992 年 12 月 1 日/2011 年 12 月 13 日 [8] JSSG-2000A,联合服务规范指南:空中系统,2002 年 10 月 8 日 [9] JSSG 2001A,联合服务规范指南:飞行器,2002 年 10 月 22 日 [10] MIL-HDBK-61A,配置管理指南,2001 年 2 月 7 日 [11] SAE EIA-649_1,国防合同配置管理要求,2014 年 11 月 [12] DOD 无人机系统空域整合计划,2.0 版,2011 年 3 月
摘要:小型飞机类别(例如小型空中运输(SAT)、城市空中交通(UAM)、无人机系统(UAS))、现代航空电子解决方案(例如电传操纵(FBW))和减小的飞机(A/C)尺寸的异质性需要更紧凑、集成、数字化和模块化的空中数据系统(ADS),该系统能够测量来自外部环境的数据。在 Clean Sky 2 计划的框架内资助的 MIDAS 项目旨在通过经过商业应用认证的 ADS 满足这些最新要求。主要支柱在于 COTS 解决方案和分析传感器(专利技术)之间的智能融合,以识别气动角度。识别涉及飞行动态关系和基于神经技术的数据驱动状态观察器,一旦训练完成,它们就是确定性的。由于该项目将首次将分析传感器作为冗余系统的一部分安装在民用飞机上,因此本工作中记录的设计活动特别关注适航认证方面。在此成熟度级别,使用模拟数据,下一阶段将使用真实飞行测试数据。描述了训练和测试方面的数据收集。训练操作旨在激发所有动态模式,而测试操作旨在独立于训练集和所有自动驾驶仪配置验证结果。结果表明,替代解决方案是可能的,可以大大节省计算工作量和代码行数,但同时也表明,更好的训练策略可能有利于应对新的神经网络架构。
本指令制定了空军物资司令部 (AFMC) 的政策,贯彻了 AFI 21-101《航空航天设备维护管理》、AFPD 62-6《美国空军飞机适航认证》和 AFPD 63-1《采购系统》的宗旨。武器系统项目经理 (SPM) 是其控制下的所有航空航天飞行器的修改审批机构。本指令专门规定了管理、控制、记录和处理航空航天飞行器的临时 2 (T-2) 修改的程序。本指令不适用于空军国民警卫队或美国空军预备役部队和成员。本 AFMCI 可以在任何级别进行补充。使用 AF 表格 847《出版物变更建议》将建议的变更和对本出版物的问题提交给主要责任办公室 (OPR);将 AF 表格 847 从现场传送到适当的职能指挥链。本出版物中豁免联队/部队级别要求的权限以合规声明后的层级编号(“T-0、T-1、T-2、T-3”)标识。有关与层级编号相关的权限的描述,请参阅 AFI 33-360《出版物和表格管理》,表 1.1。通过指挥系统向相应的层级豁免审批机构提交豁免请求,或者,向非层级合规项目的出版物 OPR 提交豁免请求。确保根据本出版物中规定的流程创建的所有记录
摘要:小型飞机类别(例如小型空中运输(SAT)、城市空中交通(UAM)、无人机系统(UAS))、现代航空电子解决方案(例如电传操纵(FBW))和减小的飞机(A/C)尺寸的异质性需要更紧凑、集成、数字化和模块化的空中数据系统(ADS),该系统能够测量来自外部环境的数据。在 Clean Sky 2 计划的框架内资助的 MIDAS 项目旨在通过经过商业应用认证的 ADS 满足这些最新要求。主要支柱在于 COTS 解决方案和分析传感器(专利技术)之间的智能融合,以识别气动角度。识别涉及飞行动态关系和基于神经技术的数据驱动状态观察器,一旦训练完成,它们就是确定性的。由于该项目将首次将分析传感器作为冗余系统的一部分安装在民用飞机上,因此本工作中记录的设计活动特别关注适航认证方面。在此成熟度级别,使用模拟数据,下一阶段将使用真实飞行测试数据。描述了训练和测试方面的数据收集。训练操作旨在激发所有动态模式,而测试操作旨在独立于训练集和所有自动驾驶仪配置验证结果。结果表明,替代解决方案是可能的,可以大大节省计算工作量和代码行数,但同时也表明,更好的训练策略可能有利于应对新的神经网络架构。
摘要:小型飞机类别(例如小型空中运输(SAT)、城市空中交通(UAM)、无人机系统(UAS))、现代航空电子解决方案(例如电传操纵(FBW))和减小的飞机(A/C)尺寸的异质性需要更紧凑、集成、数字化和模块化的空中数据系统(ADS),该系统能够测量来自外部环境的数据。在 Clean Sky 2 计划的框架内资助的 MIDAS 项目旨在通过经过商业应用认证的 ADS 满足这些最新要求。主要支柱在于 COTS 解决方案和分析传感器(专利技术)之间的智能融合,以识别气动角度。识别涉及飞行动态关系和基于神经技术的数据驱动状态观察器,一旦训练完成,它们就是确定性的。由于该项目将首次将分析传感器作为冗余系统的一部分安装在民用飞机上,因此本工作中记录的设计活动特别关注适航认证方面。在此成熟度级别,使用模拟数据,下一阶段将使用真实飞行测试数据。描述了训练和测试方面的数据收集。训练操作旨在激发所有动态模式,而测试操作旨在独立于训练集和所有自动驾驶仪配置验证结果。结果表明,替代解决方案是可能的,可以大大节省计算工作量和代码行数,但同时也表明,更好的训练策略可能有利于应对新的神经网络架构。
摘要:小型飞机类别(例如小型空中运输(SAT)、城市空中交通(UAM)、无人机系统(UAS))、现代航空电子解决方案(例如电传操纵(FBW))和减小的飞机(A/C)尺寸的异质性需要更紧凑、集成、数字化和模块化的空中数据系统(ADS),该系统能够测量来自外部环境的数据。在 Clean Sky 2 计划的框架内资助的 MIDAS 项目旨在通过经过商业应用认证的 ADS 满足这些最新要求。主要支柱在于 COTS 解决方案和分析传感器(专利技术)之间的智能融合,以识别气动角度。识别涉及飞行动态关系和基于神经技术的数据驱动状态观察器,一旦训练完成,它们就是确定性的。由于该项目将首次将分析传感器作为冗余系统的一部分安装在民用飞机上,因此本工作中记录的设计活动特别关注适航认证方面。在此成熟度级别,使用模拟数据,下一阶段将使用真实飞行测试数据。描述了训练和测试方面的数据收集。训练操作旨在激发所有动态模式,而测试操作旨在独立于训练集和所有自动驾驶仪配置验证结果。结果表明,替代解决方案是可能的,可以大大节省计算工作量和代码行数,但同时也表明,更好的训练策略可能有利于应对新的神经网络架构。
第二次世界大战后,人们重新燃起对确保飞机能够在能见度极低的天气条件下安全着陆这一长期目标的兴趣,这促使英国、法国和美国开展了自动着陆系统的研究和开发计划。在回顾了着陆辅助设备的早期发展历史之后,本文介绍了 1945 年至 20 世纪 60 年代初英国皇家飞机研究院盲着陆实验组在导航系统、自动驾驶仪耦合器和操作技术方面所做的工作。其中进行的分析和实验工作促成了 Avro Vulcan 轰炸机单通道自动着陆系统的设计,本文也详细介绍了这些工作。同样,本文还介绍了英国飞机和航空电子设备制造商、民航局和航空登记委员会对霍克西德利三叉戟、维克斯 VC10 和其他民用运输飞机上采用的多通道系统的后续开发和适航认证所做的贡献。本文最后总结了波音 737、747、767 和协和式飞机的自动着陆能力。 1. 简介和早期历史 民航客机在各种天气条件下的自动着陆已成为民航的常规组成部分,并有助于提高航空运输的安全性和可靠性。英国在这一发展中发挥了重要作用,皇家航空研究院的盲着陆实验单元就是其中之一