本文提出了一种方法,没有对传感器选择和通信网络拓扑计算的反馈,用于使用最大值结果,使用基于地面的分布式感应,计算和通信网络基础架构,并使用最低结果和最低成本。选择标准包括最大的空域与最少的资源,最少的通信时间和功耗,同时保证系统可观察性并及时为固定用户和移动用户提供高质量的高质量信息。开发的算法使用多目标优化策略,考虑到相互构想的目标之间的交易,并使用o {架子计算工具实施。在桌面仿真环境中使用合成传感器数据在选定的区域空域和概念无线通信网络的参数中生成的合成传感器数据进行了验证。
这个问题是喷气推进实验室的首要任务,正如其最新的战略意图文件 1 中提到的那样:“未来的一些任务将长时间与地球进行有限的通信,例如在木卫二上钻穿数公里厚的冰壳,这需要系统能够评估自己的环境并独立做出决策。其他任务则需要在比与地球的通信时间更短的时间内做出反应,例如从短暂的羽流中取样。无法快速可靠地从地球接收命令的任务将需要自主探索能力,减少或完全不进行人为干预。自主性可以提高航天器的生产率,当航天器无法等待地面命令时,可以实现快速反应。”
本文提出了一种独立领空监视的传感器选择和网络拓扑确定方法,并使用基于地面的分布式传感,计算和通信网络基础架构,最大结果和最低成本。选择标准包括最小估计错误,最大空域覆盖范围,最小通信时间和功耗,同时保证系统可观察性并为监视观察者提供时间质量信息。开发的算法使用多目标优化策略,考虑到交易之间的交易和及时实施的放松之间的交易。它是利用图理论工具实现的。该方法在桌面仿真环境中使用合成传感器数据在所选区域空域中生成的合成传感器数据。
我们提出了一种基于光子树簇状态的新型单向量子中继器结构。编码光子树群集中的量子群可保护信息免受传输损失的影响,并通过一系列中继器站启用远程量子通信。与受双向通信时间限制的常规方法相反,当前量子中继器协议的总体传输速率取决于可以实现非常高通信率的本地处理时间。我们进一步表明,每个中继器站都可以用两个固定量子置量和一个量子发射器来构建这样的中继器,这大大提高了实验性可行性。我们讨论了有效耦合到光子纳米结构的钻石缺陷中心和半导体量子点的潜在实现,并概述了如何将这种系统集成到中继器站中。
多块结构化网格的分区会影响数值模拟的性能和可扩展性。最佳分区器应同时实现负载平衡和最小化通信时间。最先进的域分解算法在平衡处理器之间的负载方面做得很好。但是,即使工作得到很好的平衡,通信成本也可能不平衡。影响通信成本的两个主要因素是边切割和通信量。当前的分区器主要侧重于减少总通信量,并依赖于简单的技术,例如在最长边处切割,而这种技术不会捕获几何中的连通性。它们也没有考虑网络延迟和带宽对分区的影响,导致所有平台上的分区相同。此外,它们的性能测试大多采用平面 MPI 模型,其中分区对通信的影响被同一节点上内核之间的快速共享内存访问所隐藏。在本文中,我们提出了用于多块结构化网格的新分区算法,以解决当前分区器的上述限制。新算法包括一个成本函数,它不仅考虑了通信量和边切,还考虑了网络的延迟和带宽。我们尽量减少所有处理器之间的总体成本,以创建最佳分区。为了证明所提算法的效率