摘要 电动动力系统具有与带有内燃机的传统动力系统不同的特性,并且需要非常规的飞机设计才能充分发挥其潜力。因此,本文介绍了一种识别带有电动动力系统的潜在飞机设计的方法。LuFo 项目 GNOSIS 的项目合作伙伴收集了动力系统架构、气动相互作用、机载系统和操作策略等领域的有前景的技术选项。从全球排放(CO 2 )、局部排放(NO X 和噪音)和运营成本方面评估了技术选项对通勤飞机的影响。评估考虑了 2025 年和 2050 年投入使用,并以参考飞机 Beechcraft 1900D 为基础。文献综述和简化计算使得能够对气动相互作用、系统和操作策略进行评估。初步的飞机设计工具通过引入“动力混合”和“动力分配”两个参数来评估不同的动力系统架构。随后,将兼容的技术选项汇编成技术篮,并使用与理想解的最短欧几里得距离和与最差解的最远欧几里得距离进行排序(按与理想解的相似性排序技术 (TOPSIS) 方法)。对 CS 23 法规的分析导致了高翼设计,并排除了在飞机尾部带有燃气涡轮的部分涡轮电动动力系统架构。对于 2025 年,选择了带有两个额外电动翼尖螺旋桨的部分涡轮电动动力系统。到 2050 年,串行混合动力系统使用燃气涡轮或燃料电池与电池组合,为机翼前缘的分布式电动推进器提供动力。在这两种情况下,飞机设计都包括电动环境控制系统、电动起落架和用于主飞行控制和起落架的电液执行器。
关于混合动力飞机的研究数量正在稳步增加,因为这些配置可以降低运营成本并降低对环境的影响,而这些配置比传统飞机要低。然而,由于缺乏实际混合动力飞机的参考数据,设计工具和结果很难验证。本文通过对比两种独立开发的尺寸确定方法的假设和结果,分析了开发或实施混合动力飞机设计工具时必须验证的关键点。选择一架现有的 19 座通勤飞机作为基线测试案例,并使用两种设计工具来确定该飞机的尺寸。然后,根据混合动力推进技术调整飞机的尺寸。这适用于并联、串联和全电动动力系统架构。最后,进行敏感性研究,以评估混合动力飞机设计的基本假设和方法的有效性。发现这两种方法都可以预测参考飞机的最大起飞质量 (MTOM),误差小于 4%。预测各种(混合)电动配置的 MTOM 和有效载荷范围能量效率的最大差异分别约为 2% 和 5%。本研究的结果证实了这两种方法的正确制定和实施,并提供了可用于对设计工具进行基准测试的参考数据集。