Schott彩色玻璃长期过滤器有27种标准的Schott彩色玻璃类型,可在超紫罗兰(UV),可见或近红外(NIR)光谱中提供切割波长。颜色玻璃基板在其波长范围内具有高光谱传播。Schott彩色玻璃长通滤波器设计具有标准的圆形和平方尺寸,可轻松整合到光学系统中,并具有1、2或3mm的厚度。可根据要求提供5到160mm的自定义尺寸。
摘要 本文介绍了一种使用半导体分布掺杂区 (ScDDA) 作为有源元件的带宽可切换带通滤波器的新型合成方法。提出了一种协同设计方法,对可切换滤波器的有源和无源部分进行整体和同步设计。集成在硅基板中的 ScDDA 能够从半波长开路短截线转换为四分之一波长短路短截线。这种协同设计方法具有很大的灵活性,允许将有源元件直接集成在基板中,从而避免任何元件焊接。该合成是针对有源元件的两种状态开发的,并作为概念验证应用于四极带宽可切换带通滤波器。该滤波器工作频率为 5 GHz,在 OFF 状态下(当短截线通过开路终止时)带宽为 50%,在 ON 状态下(当短截线短路时)带宽为 70%。对于该滤波器,合成在两种状态下进行,允许选择两个所需的带宽。这些结果得到了良好的拟合,证明了这种方法的可行性。
摘要 — 本文提出了一种用于多频带带通滤波器 (MBPF) 的相似变换方法,将星型拓扑转换为直列拓扑。介绍了一种通用理论技术,用耦合矩阵的相似变换旋转代替传统的通过滤波器综合逐步提取 LC 电路,解决了参数提取过程中的舍入误差,提高了理论综合结果的准确性。直列拓扑的应用大大提高了滤波器设计的灵活性,降低了电路复杂性,简化了高阶 MBPF 的制造。基于基片集成波导 (SIW) 技术,设计和实现了一系列示例,包括三频、四频,特别是首次报道的五频三阶切比雪夫 SIW 带通滤波器。模拟响应与测量结果之间具有良好的一致性,验证了设计的滤波器模型和提出的理论方法。
提出了一种基于混合耦合技术的具有宽带外抑制的紧凑型双频带带通滤波器 (BPF)。该 BPF 由两个混合螺旋耦合谐振器组成,其中谐振器之间的电耦合和磁耦合可以为双频带产生两个传输路径。这种双频带 BPF 具有宽带外抑制。此外,它的通带频率和带宽可以轻松控制。为了说明其工作原理,给出了一个具有偶模和奇模分析的等效电路。这种双频带 BPF 采用硅集成无源器件 (IPD) 技术制作。制作的双频带 BPF 具有 1.6 mm × 0.54 mm × 0.23 mm 的紧凑尺寸,并进行了测量。测量结果表明,这种双频带 BPF 可以产生 2.45 GHz 和 6.15 GHz 的两个频带。此外,在 7.8 至 20 GHz(8.16 f 0)范围内可实现超过 20 dB 的抑制。模拟结果和测量结果具有很好的一致性。
减轻运输部门的污染需要部署零排放解决方案,例如电动汽车(EV)。电动汽车的一个重大挑战是电池的寿命有限,一个钥匙和昂贵的组件。为了避免此问题,潜在的解决方案在于电池与超级电容器的整合以创建混合储能系统(HESS)。这种组合显然可以降低电池的峰值电流,从而延长其寿命,并最终导致电动汽车的长期成本效益。HESS的关键组成部分是能源管理策略(EMS),其任务是优化能量分布。低通滤波器(LPF)用作简单的实时EMS。当前的研究介绍了一种新的方法,用于确定LPF的最佳截止频率,该方法用微调(RPFT)称为Ragone图。Ragone图为电池和驱动周期提供了一般的截止频率,同时采用微调来优化它。仿真结果表明,RPFT方法的表现优于快速傅立叶变换(FFT)方法,从而证明了其功效。RPFT的应用导致电池峰值电流和电池电流均方根(BCRMS)的降低分别减少了29.80%和9.99%。本研究提供了改善电动汽车能源管理的宝贵见解,并强调了RPFT方法在延长电池寿命并提高电动汽车的成本效益方面的潜力。
由电池和超级电容器 (SC) 组成的混合储能系统 (HESS) 是解决微电网中可再生能源 (RES) 带来的稳定性问题的有效方法。本文研究了低通滤波器 (LPF) 引起的两个储能设备 (ESD) 之间的能量交换,从而导致 HESS 的容量过大。此外,ESD 之间的能量交换会导致 HESS 更多的能量损失。基于对功率流的分析,本文提出了一种基于 LPF 控制器的改进控制器。功率方向控制策略消除了无益的功率流,以降低 HESS 的容量并提高往返能量效率。此外,SOC 控制策略机制平衡了 ESD 的期望充电状态 (SOC),而不是依赖于 LPF。本文的案例研究表明,改进的 LPF 控制器将 HESS 的容量降低到最小容量并提高了往返能量效率。此外,该改进方法对电池老化没有不利影响,并且在较小容量下实现了电池寿命的延长。缩小的HESS实验装置验证了改进的LPF控制器的有效性和仿真结果。最后,将提出的改进控制器与各种现有的控制器进行比较以验证其性能。
摘要 针对第六代(6G)移动通信应用,提出了三种新型五阶超紧凑发夹带通滤波器。发夹单元的臂采用三维集成技术(TSV)实现,部分发夹单元由四个臂组成。本文介绍了这三种滤波器的设计方法,并通过基于有限元法的工业级仿真器HFSS验证了滤波特性。结果表明:所设计的三个滤波器的中心频率分别为0.405 THz、0.3915 THz、0.3955 THz,带宽分别为0.1 THz、0.077 THz、0.063 THz,插入损耗为2.0 dB,回波损耗分别为12.4 dB、13.4 dB、14 dB。所设计的三个滤波器的尺寸均为0.284×0.0325 mm2(1.29×0.148λg2)。关键词:第六代(6G)移动通信、太赫兹(THz)频段、发夹带通滤波器、硅通孔(TSV)分类:电子器件、电路和模块(硅、化合物半导体、有机和新材料)
摘要 本研究将讨论低通滤波器这一主题。研究范围将包括研究人员在整个实验过程中获得的数据、低通滤波器的样本图、理论和背景介绍以及数据和结果的分析。此外,研究还将研究一个名为 Multisim 的软件程序,以更准确地观察低通滤波器的行为。选择这个主题是因为这是研究人员最熟悉的滤波器类型。此外,这种类型的滤波器用于许多音频应用中,它可以消除背景噪音、消除数据分析中的特定频率、无线电调谐等等。因此,这种类型的滤波器被称为高切或高音切滤波器。这种熟悉是每个小组成员在整个课程中的先前经验和学习的结果。关键词:低通滤波器、截止频率、RC 低通滤波器、RL 低通滤波器、频率响应。1. 简介低通滤波器是只接受低频信号通过并阻止高频信号的滤波器 [1]。低频信号被定义为频率值低于截止频率的信号 [2]。此外,它分离输入信号,并根据频率值接受或拒绝信号。此外,它由与电感器或电容器连接的电阻器组成。只有两种类型的低通滤波器,即电感式和电容式低通滤波器 [3,4]。电容滤波器是电阻器和电压源串联连接。电容器两端的阻抗与频率成反比关系,而电容器的阻抗会随着频率值的增加而减小 [5]。这意味着电容器对低频具有高电阻,从而阻止其通过电容器。它对高频信号的电阻也很低。高频信号将通过电容器,因为它对它的电阻很低,而电容器将拒绝低频信号。因此,它将通过输出电压。由于电容器的反应性,电容器倾向于将高频信号与低频信号分开 [6]。
本文介绍了一种新型一阶全通滤波器配置。所提出的全通滤波器配置采用两种配置,即基于 VDVTA 和 OTA 的一阶全通滤波器配置。所提出的第一种配置采用单个 VDVTA 和一个接地电容器,而所提出的第二种配置采用两个 OTA 和一个接地电容器。所提出的两种配置都是完全电子可调的,其品质因数不依赖于可调极点频率范围。所报告的配置具有较低的主动和被动灵敏度,并且功耗较低,电源电压非常低,±0.85 V,偏置电压为±0.50 V。使用 0.18 µm CMOS 技术工艺参数验证了所提出的 VDVTA 和两个基于 OTA 的一阶全通滤波器配置的 PSPICE 模拟。