Amoroso , N.、la Rocca , M.、Bellantuono , L.、Deacono , D.、Fanizzi , A.、Lella , E.、Lombardi , A.、Maggipinto , T.、Monaco , A.、Tangaro , S. 和 Bellotti , R. (2019)。深度学习和多重网络用于精确模拟大脑年龄。衰老神经科学前沿,11,1 – 12。Bashyam,VM,Erus,J.,Doshi,M.,Nasrallah,M.,Truelove-Hill,M.,Srinivasan,D.,Mamourian,L.,Pomponio,R.,Fan,Y.,Launer,LJ,Masters,CL,Maruff,P.,Zhuo,C.,。Völzke,H.,Johnson,SC,Fripp,J.,Koutsouleris,N.,Satterthwaite,TD,...... Davatzikos,C.(2020 年)。基于深度脑网络和全球 14,468 名个体的生命周期脑年龄和疾病的 MRI 特征。 Brain,143,2312–2324。Brown,TT,Kuperman,JM,Chung,Y,Erhart,M,McCabe,C,Hagler,DJ,Jr,Venkatraman,VK,Akshoomoff,N,Amaral,DG,Bloss,CS,Casey,BJ,Chang,L,Ernst,TM,Frazier,JA,Gruen,JR,Kaufmann,WE,Kenet,T.,Kennedy,DN,Murray,SS,... Dale,AM(2012 年)。生物成熟度的神经解剖学评估。当代生物学, 22, 1693 – 1698。Butler, ER、Chen, A.、Ramadan, R.、le, TT、Ruparel, K.、Moore, TM、Satterthwaite, TD、Zhang, F.、Shou, H.、Gur, RC、Nichols, TE 和 Shinohara, RT (2021)。大脑年龄分析中的缺陷。人脑映射,42,4092 – 4101。http://dx.doi.org/10.1037/0033-2909.101.1.13 Casaletto, K. B., Umlauf, A., Beaumont, J., Gershon, R., Slotkin, J., Akshoomoff, N., & Heaton, R. (2015)。针对 NIH 工具箱认知电池英文版的人口统计学校正规范标准。国际神经心理学会杂志, 21, 378 – 391。Chen, C.-L.、Hsu, YC、Yang, LY、Tung, YH、Luo, WB、Liu, CM、Hwang, TJ、Hwu, HG 和 Isaac Tseng, WY (2020)。通过迁移学习对基于扩散磁共振成像的大脑年龄预测模型进行推广。神经影像,217,116831。
近年来,人们对使用机器学习(ML)来应对计算机系统的挑战越来越兴趣。这是由现代系统的复杂性日益复杂以及ML在具有相似复杂性的视觉和自然语言任务中的有效性所激发的。先前的工作已经提出了使用ML进行调度,资源管理,电源管理,调试,内存分配和编译器优化的有效性[1],[2],[3],[4]。尽管在系统中使用ML,但仍有三个主要问题阻碍了其广泛采用。首先是ML模型的解释性或解释性。许多型号充当黑匣子,因此很难从它们中提取有用的见解并在不按预期工作时调试它们。第二个问题是可伸缩性。随着ML模型变得更大,其执行必须扩展到各自的系统设置。最后关注的是ML模型的普遍性。可推广性是指该模型在与其统计属性(例如独立性和相同分布(ID))中与其训练数据不同的数据上表现良好的能力。这是动态变化的环境中的问题。一个特定的示例是一个云环境,该系统由于工作负载高而越来越多的异质硬件而经常发生变化。可解释性和可伸缩性从系统社区获得了显着意义,先前的工作评估了它们对这些指标的建议[1],[2],[5]。但是,模型的普遍性尚未受到类似的关注。mL模型依赖于他们的训练和测试数据是独立且分布相同(IID)的假设。当违反此假设时,模型的性能很差。鉴于部署在云环境中的模型通常会遇到违反IID假设的数据,因此对
我们将机器学习模型应用于预测盘中实现的波动性(RV),通过将库存数据合并在一起,并通过纳入市场波动的代理来利用盘中波动性的通用性。神经网络在性能方面主导了线性回归和基于树的模型,因为它们能够发现和建模变量之间的复杂潜在相互作用。当我们将经过训练的模型应用于培训集中尚未包括的新股票时,我们的发现重新稳定,从而为股票之间的普遍波动机制提供了新的经验证据。最后,我们提出了一种新的方法来预测使用过去的室内RV作为预测指标的1天预先启动RV,并突出显示了有助于预测机制的有趣时间效应。结果表明,所提出的方法与仅依靠过去每日RV的强大传统基线相比,产生了较高的样本外预测。
程序内容生成 (PCG) 是指在视频游戏和其他游戏中通过算法生成关卡、任务或角色等内容的做法。为了使游戏具有重玩性、减轻创作负担、限制存储空间要求和实现特定的美感,游戏开发者设计了大量 PCG 方法。此外,研究人员还探索了将机器学习、优化和约束求解的方法应用于 PCG 问题。自该领域诞生以来,游戏就广泛应用于人工智能研究,近年来,游戏被用于开发和基准测试新的机器学习算法。通过这种实践,我们越来越清楚地认识到这些算法容易出现过拟合。通常,算法不会学习通用策略,而是学习仅适用于具有特定初始参数的特定任务的特定版本的策略。为了应对这一问题,研究人员开始探索问题参数的随机化,以抵消这种过度拟合,并允许训练后的策略更轻松地从一个环境转移到另一个环境,例如从模拟机器人转移到现实世界中的机器人。在这里,我们回顾了大量现有的 PCG 研究,我们认为 PCG 在提高机器学习方法的通用性方面发挥着重要作用。这里的主要目标是向 RL/AI 展示 PCG 工具箱中的新工具,其次要目标是向游戏开发者和研究人员解释他们的工作与 AI 研究的相关性。
人们经常通过对比专业人工智能与通用人工智能 (AGI)、分析有限能力系统的短期危害与“超级智能”带来的长期风险,以及概念化人工智能系统对其环境和自身进行限制控制的复杂方式(影响、对人类的伤害、自我伤害、遏制等),来探索人工智能安全的前景。在本立场文件中,我们将人工智能安全的这三个方面重新视为定量因素——通用性、能力和控制——并表明通过定义这些维度的指标,可以更精确地描述和分析人工智能风险。作为示例,我们说明了如何在强化学习设置中的玩具场景中为一些简单代理定义这些指标及其值。
1) IEC(国际电工委员会)是一个由所有国家电工委员会(IEC 国家委员会)组成的全球标准化组织。IEC 的目标是促进电气和电子领域标准化所有问题的国际合作。为此,除其他活动外,IEC 还发布国际标准。它们的准备工作委托给技术委员会;任何对所涉及主题感兴趣的 IEC 国家委员会均可参与此项准备工作。与 IEC 联络的国际、政府和非政府组织也参与了此项准备工作。IEC 根据两个组织之间协议确定的条件与国际标准化组织 (ISO) 密切合作。
1) IEC(国际电工委员会)是一个由所有国家电工委员会(IEC 国家委员会)组成的全球标准化组织。IEC 的目标是促进电气和电子领域标准化所有问题的国际合作。为此,除其他活动外,IEC 还发布国际标准。它们的准备工作委托给技术委员会;任何对所涉及主题感兴趣的 IEC 国家委员会均可参与此项准备工作。与 IEC 联络的国际、政府和非政府组织也参与了此项准备工作。IEC 根据两个组织之间协议确定的条件与国际标准化组织 (ISO) 密切合作。