摘要:国防部 (DOD) 的长期使命是提供军事力量来遏制战争并确保国家安全。测试与评估 (T&E) 对国防部任务的成功至关重要:它能够交付经过验证的、随时可战的系统,以实现未来联合部队的杀伤力、适用性、弹性、生存力、敏捷性和响应能力。随着多领域作战环境的复杂性以更动态的速度增加,T&E 工具、流程、基础设施和劳动力必须利用最新的科学和技术进步来转变 T&E 战略,保持领先于对手,并继续激发对我们作战能力的信任和信心,同时响应自适应采购框架以按需交付这些能力。本文重点介绍 T&E 企业需要实施的转型变革,以便准确描述国防部在冲突中获胜和保卫国土的作战绩效和局限性。本文总结了期望的最终状态和初步行动,以呼吁政府、工业界和学术界采取行动,确定正确的绩效衡量标准并加速拟议的转型。
摘要:国防部 (DOD) 的长期使命是提供军事力量来遏制战争并确保国家安全。测试与评估 (T&E) 对国防部任务的成功至关重要:它能够交付经过验证的、随时可战的系统,以实现未来联合部队的杀伤力、适用性、弹性、生存力、敏捷性和响应能力。随着多领域作战环境的复杂性以更动态的速度增加,T&E 工具、流程、基础设施和劳动力必须利用最新的科学和技术进步来转变 T&E 战略,保持领先于对手,并继续激发对我们作战能力的信任和信心,同时响应自适应采购框架以按需交付这些能力。本文重点介绍 T&E 企业需要实施的转型变革,以便准确描述国防部在冲突中获胜和保卫国土的作战绩效和局限性。本文总结了期望的最终状态和初步行动,以呼吁政府、工业界和学术界采取行动,确定正确的绩效衡量标准并加速拟议的转型。
摘要:国防部 (DOD) 的长期使命是提供军事力量来遏制战争并确保国家安全。测试与评估 (T&E) 对国防部任务的成功至关重要:它能够交付经过验证的、随时可战的系统,以实现未来联合部队的杀伤力、适用性、弹性、生存力、敏捷性和响应能力。随着多领域作战环境的复杂性以更动态的速度增加,T&E 工具、流程、基础设施和劳动力必须利用最新的科学和技术进步来转变 T&E 战略,保持领先于对手,并继续激发对我们作战能力的信任和信心,同时响应自适应采购框架以按需交付这些能力。本文重点介绍 T&E 企业需要实施的转型变革,以便准确描述国防部在冲突中获胜和保卫国土的作战绩效和局限性。本文总结了期望的最终状态和初步行动,以呼吁政府、工业界和学术界采取行动,确定正确的绩效衡量标准并加速拟议的转型。
图1:爱荷华州近地表空气温度的观察和预测变化(与1901-1960的平均平均水平相比)。观察到的数据为1900-2020。2006 - 2100年的预计变化来自两种可能的未来的全球气候模型:一种温室气体排放量继续增加(排放较高),而温室气体排放量则以较慢的速度增加(较低的排放)。自20世纪初以来,爱荷华州(橙色线)的温度升高超过1°F。阴影表示模型集的年度温度范围。观察到的温度通常在历史时期模型模拟的包膜内(灰色阴影)。历史上前所未有的变暖在本世纪预计。在未来较低的排放量(最冷的预测量比历史平均水平高2°F;绿色阴影)下,预计会更少变暖,并且在未来较高的排放量(最热门的预测)下(最热的预测是比历史记录中最热门的一年大约12°F温暖;在历史记录中最热得多)。来源:Cisess和Noaa Ncei。
预计,由于人口的增加,到2050年的粮食产量将从目前的60%增加到110%(Garnett,2013年)。尽管如此,面对人口上涨和全球粮食价格上涨,粮食损失的速度增加。通常,园艺作物尤其是新鲜水果的损失是发展中国家面临的至关重要的挑战(Hailu and Derbew,2015年)。Gustavsson等人(2011年)估计,每年全球13亿吨的食物在全球范围内丢失。粮食损失是指为人类食用而生产或收获的植物和 /或动物的可食用部分,但最终不是人消耗的(Yildirim等,2016)。这一现象被认为是一个全球挑战,并努力将其提高到最低限度。目前的粮食损失率被认为是对可持续发展的重大威胁之一(Surucu-Balci和Tuna,2021年)。因为粮食损失对经济,环境和社会有负面影响(Alamar等,2018; Halloran等,2014; Gustavsson等al,2011年)。不仅如此,粮食损失增加了消费者的每单位成本,而同时减少了农民和食品价值连锁参与者的收入并增加了费用(Lipinski等,2013; Buzby和Hyman,2012)。
呼吁消除SARS-COV-2疫苗的优先次序,这是由于优先级降低疫苗接种速度的担忧。我们使用SEIR模型来研究疫苗接种分布对公共卫生的影响,比较在缓解措施下进行的临时政策和速度,这些措施可以缓解疫苗推出或在大流行时期结束时持续下去。NASEM建议的优先级会导致死亡少于没有优先级,但不会最大程度地减少总死亡。如果减轻措施,则放弃NASEM将导致大约134,000人死亡,每月3000万个现场。在没有优先级的情况下,疫苗接种速度必须至少提高53%,以避免增加死亡。随着持续的缓解,丢弃NASEM优先级将导致42,000人死亡,仅需要速度增加26%才能使死亡持续不断。因此,放弃NASEM的临时化以提高疫苗接种速度而无需大大增加死亡,可能需要减轻持续的缓解措施。
在现代世界的背景下,威胁以很高的速度增加,传统的防火墙无法确保网络的确保。本文旨在描述下一代防火墙(NGFWS)及其在现代网络中的重要性。ngfws是传统防火墙的显着改善,因为它们的某些属性包括DPI,应用程序意识,IPS集成,SSL/TLS检查,对用户身份的认识和增强威胁预防。所有这些功能都帮助NGFW陷入传统防火墙无法识别或预防的威胁,因此对于打击现代,复杂的威胁至关重要。本文还讨论了NGFW部署和管理中涉及的一些问题,这些问题与其部署的复杂性,对性能的影响以及如何处理加密流量有关。此外,还讨论了NGFW的演变,重点是NGFW的创新特征,包括人工智能和机器学习。还检查了NGFWS与其他安全解决方案之间的关系及其对监管合规性的影响。可以预期,随着组织对云和混合动力设置进行更多的变化,NGFWS在其安全计划中也将变得更加至关重要。在此分析中举例说明,NGFWS在当今的网络安全中起着至关重要的作用,随着网络的发展,需要解决进一步的挑战。
水力发电是世界上最大的可再生能源来源,供应全球电力需求的近16%(IHA,2019a)。水电在35多个国家 /地区至少满足国家电力需求的至少一半,并在不丹,刚果民主共和国,埃塞俄比亚,埃塞俄比亚,莱斯托,洛杉矶,尼泊尔,尼泊尔,挪威,挪威,挪威,巴拉圭,Zambia,Zambia,Zambia,Zambia,Zambia和Canadian省以及加拿大Queebec(World Bank Bank,2015年)贡献了90%以上的发电。全球水力发电的能力平均以自2015年以来每年2.1%的速度增加(IHA,2020a)。国际水力发电协会(IHA,2020a)估计,该协会在2019年由煤炭燃烧产生的能源产生的能源会产生额外的80-1亿吨碳。The Interna- tional Renewable Energy Agency (IRENA, 2020a) suggests that 850 GW of new hydropower capacity will be needed by 2050 to limit global temperature increase above preindustrial levels to below 2 C. Figure 1 presents the location of exis- ting hydropower projects (Global Energy Observatory, 2018), the location of planned hydropower dams (Zarfl et al., 2015), and the contribution of hydropower to the energy mix在每个国家(世界银行(2015年))中,使用了来自亚洲和拉丁美洲的IHA(2020b)的数据。
量化细胞,基因表达和肝组织学载玻片的纤维化的当前手段在研究界未标准化,通常依赖于从每张幻灯片中确定的随机区域中获得的数据中获取的数据。因此,分析受到选择偏差以及整个幻灯片可用数据元素的有限亚集。对细胞和纤维化的全面分析将提供更准确,完整的定量分析,以及最小化和实验性变量的最小化。在此,我们提出了Liverquant,一种量化数字化组织学图像的全片扫描的方法,以对提出的数据元素进行更全面的分析。在加载图像并在Qupath计划中准备项目后,每个分析提供了一到两个脚本,为其染色,自动化组织注释和下游检测其预期的细胞矩阵产生平均强度阈值。与两种用于组织学定量的标准方法相比,Liverquant具有两个显着的优势:速度增加和组织面积覆盖范围50倍。使用公开可用的开源代码(GITHUB),Liverquant提高了实验结果的可靠性和可重复性,同时减少了科学家对肝组织学进行批量分析所需的时间。此分析过程很容易受到大多数实验室的适应性,需要最小的优化,并且可以优化其原理和代码以在其他器官中使用。
我们确定飞机之间的最小安全间距以及空中交通管制系统的复杂性。考虑到领先飞机在其尾流中留下的涡流,一架飞机的尾部和下一架飞机的机头之间的距离应至少为 5.5 公里或 3.4 英里。相邻飞机之间的最小间距(无论是侧面、上方还是下方)应至少为 730 米或 0.45 英里。这些距离是使用伯努利原理计算的,该原理指出,流体(例如空气)的速度增加时,其内部压力会降低。由于飞机的速度非常高,机翼周围的压力很低。与伯努利因子相关的压力变化施加在面对的表面区域上,导致将飞机推到一起的力;这种力量可能会改变飞机的飞行模式。最后,如果两架飞机相向而行,它们之间必须有足够的空间来执行规避动作。我们发现需要 12 秒;在正常飞行速度下,这相当于 2.9 公里或 1.8 英里。我们将空域扇区的复杂性定义为在给定时间段内发生冲突的概率。为了确定复杂性,我们假设扇区是长方体,飞机以平行或反平行方向飞行。我们计算一架飞机在另一架飞机之后过早进入扇区的概率,或者两架飞机以反平行方向进入同一航道的概率。