1 de toulouse大学,Insa-CNRS-UPS,LPCNO,135 AV。Rangueil, 31077 Toulouse, France 2 Centre d'Elaboration des Matériaux et d'Etudes Structurales (CEMES), UPR8011 CNRS, Université Toulouse 3, 31055 Toulouse, France E-mail: lassagne@insa-toulouse.fr Graphene-based Hall effect magnetic field sensors hold great promise for the development of ultrasensitive magnetometers with very low power 消耗。经常使用所谓的两通道模型对其性能进行分析,其中简单地添加了电子和孔电导率。不幸的是,该模型无法捕获所有传感器的特性,尤其是磁场灵敏度的偏置电流依赖性。在这里,我们提出了一个高级模型,该模型对基于石墨烯的霍尔传感器如何运行并证明其定量评估其性能的能力有深入的了解。首先,我们根据石墨烯的不同品质报告了传感器的制造,最好的设备可实现高达5000ω/𝑇的磁场敏感性,表现优于最佳的硅和基于窄间隙的半导体传感器。然后,我们使用所提出的数值模型详细检查了它们的性能,该模型将Boltzmann的形式主义与电子和孔的不同Fermi水平结合在一起,以及一种引入底物诱导的电子孔 - 水坑的新方法。重要的是,磁场灵敏度对偏置电流,无序,底物和霍尔杆几何形状的依赖性首次定量再现。此外,该模型强调,由于电流堆积物的出现和霍尔酒吧边缘附近的损耗区域的出现,具有电荷载体扩散长度宽度的设备受到偏置电流的影响很大,比常规HALL效应预测大得多。这些区域的形成诱导了横向扩散荷载载体通量,当Hall电场取消在Ambipolarememime中,能够抵消由Lorentz力诱导的载体。最后,我们讨论了Fermi Velocity Engineering如何增强传感器性能,为将来的超敏感石墨烯效果传感器铺平了道路。关键字:石墨烯,石墨烯霍尔传感器,磁场传感器,霍尔效应,玻尔兹曼形式主义,费米速度重新归一化,电子孔布丁
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
放置是一项至关重要的任务,在VLSI物理设计中具有高计算复合物。现代的分析贴花将放置目标作为非线性优化任务,遭受了长时间的迭代时间。为了加速和增强放置过程,最近的研究转向了基于深度学习的方法,尤其是利用图形卷积网络(GCN)。但是,由于电路放置的复杂性涉及大规模的单元格和特定于设计的图形统计,因此基于学习的位置需要时间和数据消耗的模型培训。本文提出了礼物,这是一种无参数的技术,用于加速位置,植根于图形信号处理。礼物擅长捕获电路图的多分辨率平滑插图,以生成优化的放置解决方案,而无需进行耗时的模型训练,同时显着减少了分析放置器所需的迭代次数。实验结果表明,礼物可显着提高放置效率,同时达到竞争性或卓越的性能与最先进的垫片相符。,与
C3 194.0 415.7 ± 17.6 352.4 ± 14.2 ± 0.4 14.5 ± 3.8 C4 789.3 735.8 ± 41.6 317.0 ± 16.5 ± 0.4 11 840.4 972.3 ± 39.2 969.4 ± 36.1 3.6 ± 0.6 28.4 ± 4.1 C7 574.3 1104.1 ± 44.3 334.4±13.2 19.4±C9 188.4 228.8±9.9 104.0±4.4 32.5±3.4 35.4 35.4±4.5 C10 1782.5 5019.3±244.6 1636.6 1636.6±81.5±81.5±0.5±0.5±0.5 76±9.9.9.9.9 0.8 C12 505.4 C12 505.4 69.7.7.7.7±694.7±694.7±694.7±694.7±69.7±69.4±69.7±69.7±69.7±69.7±69.7±69.7±69.4±69.7±69.4±69.4应该±0.4 7.7±1.1 C13 4155.5 1612.4±84.5 449.2±23.6.6.6±1.0 C14 2080.2 1732 12.5±1.9 315C3 194.0 415.7 ± 17.6 352.4 ± 14.2 ± 0.4 14.5 ± 3.8 C4 789.3 735.8 ± 41.6 317.0 ± 16.5 ± 0.4 11 840.4 972.3 ± 39.2 969.4 ± 36.1 3.6 ± 0.6 28.4 ± 4.1 C7 574.3 1104.1 ± 44.3 334.4±13.2 19.4±C9 188.4 228.8±9.9 104.0±4.4 32.5±3.4 35.4 35.4±4.5 C10 1782.5 5019.3±244.6 1636.6 1636.6±81.5±81.5±0.5±0.5±0.5 76±9.9.9.9.9 0.8 C12 505.4 C12 505.4 69.7.7.7.7±694.7±694.7±694.7±694.7±69.7±69.4±69.7±69.7±69.7±69.7±69.7±69.7±69.4±69.7±69.4±69.4应该±0.4 7.7±1.1 C13 4155.5 1612.4±84.5 449.2±23.6.6.6±1.0 C14 2080.2 1732 12.5±1.9 315
©作者2024,更正的出版物2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
在测试中,丝膜在小于1 bar的真空压力下达到每小时56.8升的水流量。允许有益的矿物质通过,该膜拒绝了超过99%的水中有机污染物,例如臭名昭著的全氟化合物(也被广泛称为永远的化合物),这引起了全球对其毒性和持久性的关注。
点击转换率(CVR)估计是许多推荐收入业务系统(例如电子商务和广告)的重要任务。从样本的角度来看,典型的CVR阳性sample通常会经过曝光的漏斗→单击→转换。由于缺乏未点击样本的事后标签,CVR学习任务通常仅利用点击样本,而不是所有暴露的样本,即单击率(CTR)学习任务。然而,在在线推断期间,在相同的假定暴露空间上估算了CVR和CTR,这会导致训练和推理之间的样本空间不一致,即样本选择偏置(SSB)。为了减轻SSB,以前的智慧建议设计新颖的辅助任务,以使CVR学习在未单击的培训样本(例如CTCVR和反事实CVR等)上。尽管在某种程度上减轻了SSB,但它们都不关注模拟过程中模棱两可的负样本(未点击)和事实负面样本(单击但未转换)之间的歧视,这使得CVR模型缺乏健壮性。为了充分的差距,我们提出了一个新颖的合唱模型,以实现整个空间中的CVR学习。我们提出了一个负面样本差异模块(NDM),该模块旨在提供可靠的软标签,并具有将事实负面样本(单击但未转换)与模棱两可的负面样本(未敲击)区分开的能力。此外,我们提出了一个软对准模块(SAM),以使用生成的软标签的几个对齐目标来监督CVR学习。在Kuaishou的电子商务实时服务上进行了广泛的离线实验和在线A/B测试,验证了我们ChorusCVR的功效。
文章历史:在过去的十年中,已经开发了各种基于速度障碍的方法,以避免动态环境中的碰撞。但是,这些方法通常仅限于处理几个障碍,连续的相遇或缺乏安全地形的安全保证。本文提出了使用速度障碍法的自适应碰撞避免策略,旨在使自主火星流浪者能够安全地驾驶动态和不确定的地形,同时避免多个障碍。该策略构建了自适应速度锥体,考虑了动态障碍和地形特征,从而确保了连续的安全性,同时将漫游者引导到其航路点。我们在模拟的MARS探索方案中实施了策略,代表了具有挑战性的多OSTACLAS任务。模拟结果表明,我们的方法通过增加安全距离来增强性能,使其非常适合自主行星探索,在这种情况下,避免碰撞对于任务成功至关重要。
Ph.D.论文委员会成员:Luofeng Liao,Jiangze Han(不列颠哥伦比亚大学),Tianyu Wang,Aapeli Vuorinen,Madhumitha Shridharan,Jerry Anunrojwong(哥伦比亚商学院),Steven Yin(2022),Sai Ananthanarayananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananaan lagzi of Turrontanaan lagzi(202222222) Yuan Gao(2022),Jingtong Zhao(2021),Fengpei Li(2021),Kumar Goutam(2020),Shuoguang Yang(2020),Min-Hwan OH(2020),Randy Jia(2020),Randy Jia(2020),Vladlena Powers(2020),vladlena Powers(2020),Zhe liuia liuia liuia(2019年),2019年,2019年(2019年)贝鲁特美国大学),Suraj Keshri(2019),Shuangyu Wang(2018),Francois Fagan(2018),Xinshang Wang(2017)Ph.D.论文委员会成员:Luofeng Liao,Jiangze Han(不列颠哥伦比亚大学),Tianyu Wang,Aapeli Vuorinen,Madhumitha Shridharan,Jerry Anunrojwong(哥伦比亚商学院),Steven Yin(2022),Sai Ananthanarayananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananaan lagzi of Turrontanaan lagzi(202222222) Yuan Gao(2022),Jingtong Zhao(2021),Fengpei Li(2021),Kumar Goutam(2020),Shuoguang Yang(2020),Min-Hwan OH(2020),Randy Jia(2020),Randy Jia(2020),Vladlena Powers(2020),vladlena Powers(2020),Zhe liuia liuia liuia(2019年),2019年,2019年(2019年)贝鲁特美国大学),Suraj Keshri(2019),Shuangyu Wang(2018),Francois Fagan(2018),Xinshang Wang(2017)
摘要 CRISPR/Cas9 系统可实现无疤痕、无标记的基因组编辑。目前,用于裂殖酵母 Schizosaccharomyces pombe 的 CRISPR/Cas9 系统依赖于繁琐且耗时的克隆程序,将特定的 sgRNA 靶序列引入 Cas9 表达质粒中。此外,据报道,当从强 adh1 启动子持续过表达 Cas9 核酸内切酶时,它会对裂殖酵母产生毒性。为了克服这些问题,我们开发了一种改进的系统 SpEDIT,它使用从中等强度 adh15 启动子表达的针对 S. pombe 进行密码子优化的合成 Cas9 序列。SpEDIT 系统表现出灵活的模块化设计,其中 sgRNA 与自切割丁型肝炎病毒 (HDV) 核酶的 3' 端融合,从而允许 tRNA 基因序列中的 RNA 聚合酶 III 驱动 sgRNA 盒的表达。最后,在 GFP 占位符两侧加入 Bsa I 型 IIS 限制酶位点,可实现 Golden Gate 介导的一步式 GFP 替换和合成的 sgRNA 表达。SpEDIT 系统通过转化异步培养细胞,在 ade6 + 或 ura4 + 基因中生成靶点突变体,可实现 100% 的诱变效率。SpEDIT 还允许以最小的努力获得插入、标记和删除事件。还可以轻松实现两个独立非同源基因位点的同时编辑。重要的是,与目前可用的 S. pombe 编辑系统相比,SpEDIT 系统显示出更低的毒性。因此,SpEDIT 提供了一种有效且用户友好的 CRISPR/Cas9 程序,可显著改善裂殖酵母的基因组编辑工具箱。