摘要:本文提出了一种77 GHz串馈贴片阵列天线的设计方法。该研究基于传统遗传算法,探索由相同微带贴片组成的不同阵列拓扑来优化设计。主要的优化目标是降低最大旁瓣电平(SLL)。采用该方法对一种用于汽车雷达的77 GHz串馈贴片阵列天线进行了仿真、加工和测量。天线长度限制不大于3 cm,阵列仅有单个紧凑串联,辐射贴片宽度约为1.54 mm。在用于优化的遗传算法中,将最大旁瓣电平设置为小于或等于-14 dB。测量结果表明,在77 GHz处,所提出的天线的增益约为15.6 dBi,E平面半功率波束宽度约为±3.8 ◦,最大旁瓣电平约为-14.8 dB,H平面半功率波束宽度约为±30 ◦。电磁仿真与测量结果表明,采用所提方法设计的77 GHz天线比本文相同长度的传统天线旁瓣抑制效果提高4 dB以上。
摘要:遗传算法(GA)比其他方法(例如梯度下降或随机搜索)更有用,尤其是对于具有许多局部最小值和Maxima的非不同的函数,例如梯度下降或随机搜索。标准GA方法的缺点之一是需要设置许多超参数,并且基于复杂规则而不是更直观的模糊规则,选择压力是基于复杂的规则。通过模糊逻辑调整此类参数的遗传算法的变体,以使参数更新原理更容易解释,构成模糊遗传算法(FGAS)的类别。本文提出了对具有N个特性和自动生成规则的两个相对模糊遗传算法(FGA)的修改,以及旨在改善模拟运行时的计算优化。在基准功能(Ackley,Griewank,Rastrigin和Schwefel)上评估了修改,并且选择了每个修改方法的最佳设置(即成员资格功能,术语数,T-norm和t-conorm)。将结果与标准GA和粒子群优化(PSO)进行了比较。结果表明,FGA方法可以使用缓存和最近的邻居方法进行优化,而不会失去准确性和收敛性。证明这两种修改后的方法在统计学上的表现明显比基线方法差。结果,我们提出了对现有两种算法的两种优化:通过缓存和测试其性能,通过规则生成和最近的邻居估算进行外推。
拓扑优化(to)通常使用且经过充分探索。然而,它在航空航天应用中使用的复杂热流体设备设计中的利用是有限的且相对较新的。这是因为流体动力学,传热和形状之间的耦合是复杂且非线性的。此外,由于可能发生的自由形式,从一个到分析产生的几何形状通常非常复杂,而且很难制造。随着添加剂制造(AM)的出现,可以直接制造复杂的几何形状。这项研究开发了一种基于计算流体动力学(CFD)的新遗传算法(GA),以生成用于航空航天应用中使用的热交换器的优化细胞形状。为了实现这种方法,使用体素表示创建了矩形基线细节。通过突变基线限制的次数来产生一个无性群体。然后使用CFD软件包OpenFOAM评估每个设计的性能,然后应用优化算法。GA使用由整体传热和压降组成的复合材料函数对设计进行分类,并基于突变和最高表现设计的结转而生成新一代。该研究还探讨了GA对各种GA选项的敏感性以及不同流动雷诺数的影响。通常,随着雷诺数的增加,最佳相对于基线的最佳提高百分比增加,可能会提高89%。总体而言,该方法可以生成新颖的自由形式设计,这些设计可能为传热应用打开新的性能空间。
针对入侵检测系统(IDS)检测速度慢、自适应性差、检测准确率不高等问题,提出一种基于自适应并行量子遗传算法的正则化互信息特征选择与多算子协同进化的检测算法(NMIFS MOP-AQGA)。为了对高维特征数据进行有效约简,采用NMIFS方法选择最佳特征组合,将最佳特征送入MOP-AQGA分类器进行学习训练,得到入侵检测器,将数据输入检测算法,最终产生准确的检测结果。在真实异常数据上的实验结果表明,NMIFS MOP-AQGA方法比现有检测方法具有更高的检测准确率、更低的误报率和更强的自适应性能,尤其对于小样本集更为有效。
1设拉子技术大学电气和电子工程系,伊朗71557-13876; m.dehghani@sutech.ac.ir(M.D.); mardaneh@sutech.ac.ir(M.M.)2加拿大卡尔加里大学卡尔加里大学电气与计算机工程系,加拿大AB T2N 1N4; maliko@ucalgary.ca 3能源技术系,微电网研究中心,奥尔堡大学,丹麦9220 AALBORG; joz@et.aau.dk 4 Tecnologico de Monterrey,Monterrey N.L.工程与科学学院64849,墨西哥; carlos.sotelo@tec.mx(C.S.); David.sotelo@tec.mx(D.S.)5 104工程单元A,宾夕法尼亚州立大学宾夕法尼亚州立大学建筑工程系A工程系A 16802; mun369@psu.edu.edu6écolede Technologiesupérieure,魁北克大学,蒙特利尔,QC H3C 3P8,加拿大; kamal.al-haddad@etsmtl.ca *信件:ricardo.ramirez@tec.mx;电话。: + 52-81-2001-5597
摘要:风能是一种丰富的可再生能源,近年来在世界范围内得到广泛应用。本研究提出了一种新的基于多目标优化 (MOO) 的风能系统遗传算法 (GA) 模型。所提出的算法包括非支配排序,其重点是最大化风力涡轮机的功率提取,最小化发电成本和电池寿命。此外,还分析了风力涡轮机和电池储能系统 (BESS) 的性能特征,特别是扭矩、电流、电压、充电状态 (SOC) 和内阻。完整的分析是在 MATLAB/Simulink 平台上进行的。将模拟结果与现有的优化技术(如单目标、多目标和非支配排序 GA II(遗传算法 II))进行了比较。从观察结果来看,非支配排序遗传算法 (NSGA III) 优化算法提供了卓越的性能,特别是更高的涡轮机功率输出、更高的扭矩率、更低的速度变化、更低的能源成本和更低的电池退化率。该结果证明,与传统的优化工具相比,所提出的优化工具可以从自激感应发电机(SEIG)中提取更高的功率。
1.B.1. 使用遗传算法进行监督学习的有效特征选择(Hilda & Rajalaxmi,2015) 1.B.2. PHGA:用于二元分类特征选择的混合遗传算法(Khiabani & Sabbaghi,2017) 1.B.3. 使用改进的遗传算法和经验模态分解进行 ECG 信号处理的特征选择(Anderson,2015) 1.B.4. 用于支持向量机同时进行模型和特征选择的多目标遗传算法(Bouraoui、Jamoussi & BenAyed,2018) 1.B.5. 基于遗传算法的亲属关系验证特征选择(Alireza-zadeh、Fathi & Abdali-Mohammadi,2015) 1.B.6. 1.B.1. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.2. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.3. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.4. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.5. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.6. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.7. 基于遗传算法的特征选择结合双重分类用于增生性糖尿病视网膜病变的自动检测 (Welikala, Fraz, Dehmeshki, Hoppe, Tah, Mann, Williamson, & Barman, 2015b) 1.B.8. 基于增强遗传算法的混合特征选择用于文本分类 (Ghareb, Bakar, & Hamdan, 2016) 1.B.9. DWFS:一种基于并行遗传算法的包装器特征选择工具 (Soufan, Kleftogiannis, Kalnis, & Bajic, 2015) 1.B.10.基于遗传算法的特征选择方法用于高效的文本聚类和文本分类 (Hong, Lee, & Han, 2015) 1.B.11. 具有积极突变的遗传算法用于 BCI 特征空间中的特征选择 (Rejer, 2015)
载卫星通信的最新进展提高了动态修改直接辐射阵列(DRA)的辐射模式的能力。这不仅对于传统的通信卫星(例如地球轨道(GEO))至关重要,而且对于低轨道(例如低地球轨道(LEO))的卫星也至关重要。关键设计因素包括光束的数量,梁宽,有效的各向同性辐射功率(EIRP)和每个梁的侧叶水平(SLL)。然而,当试图同时满足上述设计因素的要求时,在多微型方案中出现了一个挑战,这些设计因素反映为不均匀的电源分配。这导致过度饱和,尤其是由于每个光束的激活时间(通常称为激活实例),在中心位置的天线元件中。应对这一挑战,本文提出了一种平衡每个必需光束天线元件激活实例的方法。我们的重点是在位于地球表面500公里的立方体上以19 GHz运行的光束。我们引入了一种基于遗传算法(GA)的算法,以通过调节每个天线元件的重量矩阵的振幅分量来优化光束成型系数。该算法的关键约束是对每个元素激活实例的限制,避免了射频(RF)链中的过度饱和。此外,该算法可满足梁的要求,例如梁宽,SLL,指向方向和总功率。使用先前的关键设计因素,该算法将优化所需的基因,以解决所需的光束特性和约束。我们使用8×8 DRA贴片天线在三个方案中测试了该算法的有效性,该天线具有圆形极化,并在三角形晶格中排列。结果表明,我们的算法不仅符合所需的光束模式规格,而且还确保了整个天线阵列的均匀活化分布。
1 阿斯图里亚斯中央大学医院,33011 奥维耶多,西班牙 2 奥维耶多大学数学系,33007 奥维耶多,西班牙; sanchezfernando@uniovi.es 3 奥维耶多大学工商管理系,33004 奥维耶多,西班牙; suarezana@uniovi.es (A.S.S.); fjiglesias@uniovi.es (F.J.I.-R.) 4 阿利坎特大学光学、药理学和解剖学系,03690 阿利坎特,西班牙; mm.segui@ua.es * 通讯作者:evam.artime@sespa.es † 本文是会议论文的延伸:Artime Rí os, E.M.;桑切斯·拉什拉斯,F.;苏亚雷斯·桑切斯,A.; Iglesias-Rodríguez,F.J.;SeguíCrespo,M.M. 基于树和进化算法的预测医护人员计算机视觉综合症的混合算法。第 13 届国际会议论文集,混合人工智能系统 (HAIS),奥维耶多,西班牙,2018 年 6 月 20 日至 22 日。
摘要:当太阳能电池板无法产生足够的能量时,建立储能系统是有益的。然而,在可行性和效率方面存在一个重大问题。这些限制可以通过部署最佳运行策略来克服。在以前的研究中,研究人员通常专注于在这种情况下寻找解决问题的策略,只有一两个评估指标,缺乏对综合目标的全面评估。此外,很少有研究提出适用于具有不同能源需求特征的基于预测的运行场景的电池系统通用模型。因此,本研究开发了一个电池储能系统运行计划优化的综合评估模型,该模型具有详细、全面的分析以及实施的实用性。为了尽可能迅速、完全地消耗光伏发电的最大允许速率,该模型基于最大化自耗策略 (MSC)。采用遗传算法对光伏发电和负载需求进行时间匹配,充分考虑综合技术经济指标和总运行成本。该模型在典型的美国房屋中进行了验证,根据所分析的三种电池的技术经济指标选择最佳电池系统。研究发现,Discover AES、Electriq PowerPod2 和 Tesla Powerwall+ 这三种电池都可以作为储能选项,在短时间充电和放电阶段,它们的技术性能存在细微差别。Discover AES 的优势在于,在电池储能系统长期运行期间,可以及时利用光伏发电来满足负载需求。通过机器学习方法正确预测建筑能源需求,可以进一步扩展模型的稳健性和预测性能。机器学习方法被证明可行,可以使我们的优化模型适应具有不同能源需求特征的各种电池存储场景。这项研究在两个方面具有创新性。首先,使用 MSC 策略的遗传算法进行分层优化。其次,将机器学习方法与遗传算法结合使用,对预测计划进行在线优化。此外,本文提出的制定最佳运行计划的方法具有三大优点,即:通用性、实施方便和可扩展性好。然而,电池储能系统的充电和放电性能是在短期运行和常规太阳辐射下模拟的。未来应研究考虑太阳波动的长期运行。