摘要 - 为了确保较低的延迟,服务提供商越来越多地转向边缘计算,将服务和资源从云到网络的边缘,尽可能靠近用户。但是,由于视频和图像处理应用程序在计算上特别密集,因此它们的部署通常基于边缘和云之间的分布式配置,这在依靠不可靠的网络时可能会增加故障的风险。在这项工作中,我们提出了算法RAP-G(具有遗传学的可靠性意识服务放置),该算法使用遗传算法(GA)考虑了网络链接的可靠性并在云和边缘之间分发服务。我们还开发了一种称为RF2(可靠性意识的第一拟合)的第一拟合算法的新变体,该算法在合理的时间内考虑可靠性。评估了RAP-G算法的性能,并将其与RF2算法进行比较。实验结果表明,考虑在服务提供的可靠性和RAP-G的优势方面的重要性。索引术语 - 边缘计算,人工智能,超可靠的低潜伏期通信,服务编排
摘要:可再生能源生成器(REG)单位的最佳计划有助于满足未来的电力需求,并提高灵活性。因此,本文提出了一种基于遗传算法(GA)的混合组合(GA)和使用分析功率流方程的溶液,以最佳的量和放置电力系统网络中的REG单元的位置。GOGA的目标是系统损失最小化和灵活性改善。使用KRON方程,目标函数表示系统损失是不同发电机生成的功率的函数。基于电压偏差和系统损耗,提出了一种灵活性指数(FI)来评估灵活性的改善。在测试系统的各种总线上放置REG之后,将执行功率流量运行,并计算系统损耗,这被认为是染色体纯度值。GOGA通过更改REG单元的位置来搜索拟合度函数的最低值。交叉,突变和替换算子来生成新的染色体,直到根据REG的大小和位置获得最佳解决方案为止。在印度的Rajasthan Rajya Vidyut Prasaran Nigam Ltd.(RVPN)的Rajasthan Rajya Vidyut Prasaran Nigam Ltd.(RVPN)的一部分的一部分进行了一项研究。使用线性拟合模型计算了10年时间范围的载荷预测。进行了成本 - 固定分析,并确定拟议的GOGA提供了一种可行的可行解决方案,具有提高的灵活性。确定GOGA可确保高收敛速度和良好的解决方案准确性。此外,与常规GA相比,GOGA的性能优越。
摘要:随着先进制造对精确微型和纳米级图案的不断增长的要求,迫切需要对EBL过程的优化。当前的优化方法涉及GA与GWO或PSO与GWO等组合,而GWO与不良的探索 - 探索折衷折衷相困难,因此融合到次优溶液或溶液的不足。通过创新的自适应狼驱动的蜂群进化方法克服了上述挑战,使GA,PSO和GWO的优势协同以进行EBL的优化过程。从GA中产生多样化的解决方案人群是AWDSE的开始,以确保搜索空间中的广泛探索。此外,使用GWO的基于角色的分类将解决方案分层分类为不同的角色:Alpha,Beta,Gamma,Delta。的解决方案(Alpha,beta)通过基于PSO的更新来完善,这些更新通过更新解决方案来利用搜索空间,而解决方案排名较低(Gamma,delta)则受到GA驱动的交叉和突变操作,以维持多样性和探索。GA的进化操作与PSO粒子更新之间的自适应切换肯定是由GWO的领导动力驱动的,GWO的领导动力可以使多样化强化的更密集平衡,从而可以提高收敛精度和速度。实验结果证明,AWDSE能够提高约18%的临界维度,而延迟时间的收缩率达到12%,效果超过了GA-GWO和PSO-GWO的传统方法。这一进步强调了AWDSE可以显着提高EBL效率和准确性的可能性,而远离纳米制造过程的景色却越来越快。
摘要。为了克服有限元方法的网格依赖性,作者提出了遗传算法在用肋板和梁对弹性基础的无网状优化中的应用。肋板被视为板和梁的组合。基于无网状方法并与遗传算法相结合,优化了矩形肋板的肋骨排列位置,以最大程度地减少侧向载荷下肋骨板的中心点的偏转。与传统的有限元方法相比,使用作者的无网格方法进行肋骨位置优化肋板的分析不需要网格重建,并且在板上离散的节点和肋骨总是不需要更改。结果表明,与第二代人相对应的中心点的挠度值更加集中,并且与第一代相比,挠度值较小的个体也更加集中。混合遗传算法确实有效。作者添加了受约束的随机方向方法,以基于遗传算法形成混合遗传算法,该算法会加速收敛速度,降低计算重复速率,并显着降低遗传算法的计算代数,从而将其降低到两到三代。
▶优化算法基于进化原理▶遗传算法(GA):J. Holland(1975)引入的遗传算法(GA)▶GA GA基因型:固定长度的Bitsrings▶表型:与基因型相对应的候选溶液
在优化的情况下将产品传达给客户对于公司本身至关重要。要考虑的一种优化策略是运输,最小数量的车辆和各个位置之间最小距离的课程选择。换句话说,这是对车辆路由问题(VRP)的解决方案的检查,尤其是电容的VRP(CVRP),这是一种更现实的模型化方法。对于经常向客户进行分销的企业,例如管理日常分销协调的管理工作,按时完成分销非常重要。在具有复杂道路和许多下降点的大城市中,这可以通过从CVRP的系统建模中受益而实现。在这项研究中,伊斯坦布尔人的面包的一个生产设施的交付网络调查位于伊斯坦布尔的Türkiye,每天分配三次的伊斯坦布尔一侧,这将是感兴趣的重点。将使用遗传算法(GA)来解决设施网络的相应不对称CVRP(ACVRP)和带有正宗驾驶距离的215个带有正宗驾驶距离的面包自助餐,并将提出优化的运输网络。
摘要 - 胸癌构成了重大的全球威胁,强调了迫切需要早期检测以降低死亡率。研究人员正在努力最大程度地减少假阳性和假阴性的发生,从而提高了乳腺癌检测模型的效率。为了实现这一目标,他们采用了先进的技术,例如人工精神,机器学习,深度学习和计算智能。支持向量机(SVM)和K-Nearest邻居(KNN)是两种流行的轻型机器学习技术。;但是,它们的有效性取决于适当的特征选择和参数调整。遗传算法操作通过智能选择相关特征和微调参数提供了解决方案,从而提高了早期诊断的分类精度。这项研究证明了使用遗传算法进行特征选择的混合计算智能模型的有效性。使用威斯康星州乳腺癌诊断数据集,提出的Gaknn-SVM模型在检测乳腺肿瘤方面表现出了卓越的性能。结果表明,基于171个测试样本,其准确性,灵敏度和特异性率分别为98.25%,98.15%和98.41%。总体而言,遗传算法和机器学习方法具有提高乳腺癌检测准确性的巨大希望,最终导致更好的诊断结果和降低的死亡率,尤其是在资源受限的环境中。
摘要本研究探讨了遗传算法在生成高度非线性取代盒(S-boxE)中用于对称密钥密码学中的应用。我们提出了一种新颖的实现,将遗传算法与沃尔什 - 哈达玛德频谱(WHS)成本函数相结合,以产生8x8 s盒,非线性为104。我们的方法通过最著名的方法实现了绩效均衡,平均需要49,399次迭代,成功率为100%。这项研究表明,该领域中早期的遗传算法实现的显着改善,从数量级降低了迭代计数。通过通过不同的算法方法实现等效性能,我们的工作扩展了可用于密码学家的工具包,并突出了加密原始生成中遗传方法的潜力。遗传算法的适应性和并行化潜力提出了有望在S-box生成中进行研究的有希望的途径,有可能导致更强大,有效和创新的加密系统。我们的发现有助于对称密钥密码学的持续发展,从而提供了优化安全通信系统关键组件的新观点。关键字1 S-box生成,遗传算法,非线性取代,Walsh-Hadamard Spectrum,加密原语,启发式优化,加密强度1.简介
摘要:从大脑中汲取灵感,已经提出了尖峰神经网络(SNN)来理解和减少机器学习和神经形态计算之间的差距。超级学习是传统ANN中最常用的学习算法。然而,由于尖峰神经元的不连续和非差异性质,直接使用基于反向传播的监督学习方法培训SNN具有挑战性。为了克服这些问题,本文提出了一种新颖的基于元疗法的监督学习方法,以适应时间误差函数。我们研究了七种称为Harmony Search(HS),杜鹃搜索(CS),差异进化(DE),粒子群优化(PSO),遗传算法(GA),人工BEE COLONY(ABC)和语法进化方法的遗传算法(GA),遗传算法(GA),遗传算法优化(GA),遗传算法优化(GA),遗传算法优化(GA),用于携带网络培训的搜索方法。使用相对目标频率时间而不是固定和预定的时间,使误差函数的计算更加简单。使用UCI机器学习存储库中收集的五个基准数据库评估了我们所提出的方法的表现。实验结果表明,与其他实验算法相比,该提议的算法在解决四个分类基准数据集方面具有竞争优势,其准确率为0.9858、0.9768、0.77752,而IRIS,癌症,糖尿病,糖尿病和0.6871的精度为0.9858、0.9768、0.77752和0.6871。在七种元启发式算法中,CS报告了最佳性能。
高密度脑电图 (HD-EEG) 已被证明是估计大脑内部神经活动精度最高的 EEG 蒙太奇。多项研究报告了电极数量对特定源和特定电极配置的源定位的影响。这些配置的电极通常是手动选择的,以均匀覆盖整个头部,从 32 个电极到 128 个电极,但电极配置通常不是根据它们对估计精度的贡献来选择的。在本文中,提出了一项基于优化的研究,以确定可使用的最小电极数量,并确定可以保持 HD-EEG 重建定位精度的最佳电极组合。这种优化方法结合了广泛使用的 EEG 蒙太奇的头皮标志位置。这样,可以针对单源和多源定位问题系统地搜索最小电极子集。非支配排序遗传算法 II (NSGA-II) 结合源重建方法用于制定多目标优化问题,该问题同时最小化 (1) 每个源的定位误差和 (2) 所需的 EEG 电极数量。该方法可用于评估低密度 EEG 系统(例如消费级可穿戴 EEG)的源定位质量。我们对已知真实值的合成和真实 EEG 数据集进行了评估。实验结果表明,对于单个源情况,具有 6 个电极的最佳子集可以达到与 HD-EEG(具有 200 多个通道)相同或更好的精度。在重建特定大脑活动时,在合成信号中超过 88% 的情况和在真实信号中超过 63% 的情况都会发生这种情况,而在考虑具有 8 通道的最佳组合时,分别在超过 88% 和 73% 的情况下也会发生这种情况。对于三源多源情况(仅使用合成信号),研究发现,在至少 58%、76% 和 82% 的情况下,8、12 和 16 个电极的优化组合可达到与 231 个电极 HD-EEG 相同或更好的精度。此外,对于这样的电极数量,获得的平均误差和标准偏差低于 231 个电极。