黑豆 [ Vigna mungo (L.) Hepper] 是一种营养丰富的豆科作物,主要生长在南亚和东南亚,其中印度的种植面积最大,那里的黑豆作物受到多种生物和非生物胁迫的挑战,导致产量严重损失。改善遗传收益以提高农场产量是黑豆育种计划的主要目标。这可以通过开发对主要疾病(如绿豆黄花叶病、乌豆叶皱缩病毒、尾孢叶斑病、炭疽病、白粉病)和昆虫害虫(如白蝇、豇豆蚜虫、蓟马、茎蝇和豆象)具有抗性的品种来实现。除了提高农场产量外,结合市场偏好的性状还能确保采用优良品种。黑豆育种计划依赖于有限数量的亲本系,导致所开发品种的遗传基础狭窄。为了加速遗传增益,迫切需要纳入更多不同的遗传物质,以改善育种群体的适应性和抗逆性。本综述总结了黑豆的重要性、主要的生物和非生物胁迫、可用的遗传和基因组资源、潜在作物改良的主要性状、它们的遗传以及黑豆用于开发新品种的育种方法。
佐剂在疫苗和癌症疗法中至关重要,通过各种机制增强了治疗效率。在疫苗中,佐剂传统上是值得放大免疫反应的价值,从而确保了对病原体的强大和持久的保护。在癌症治疗中,佐剂可以通过靶向肿瘤抗原来提高化学疗法或免疫疗法的有效性,从而使癌细胞更容易受到治疗。最近的研究发现了佐剂的新分子水平效应,主要是通过表观遗传机制。表观遗传学包括基因表达中的可遗传修饰,这些修饰不会改变DNA序列,影响诸如DNA甲基化,组蛋白修饰和非编码RNA表达等过程。这些表观遗传变化在调节基因活性,影响免疫途径以及调节免疫反应的强度和持续时间方面起着关键作用。在疫苗或癌症治疗中,了解佐剂与表观遗传调节剂的相互作用如何为在各种医疗领域开发更精确的细胞靶向疗法提供显着潜力。本综述深入研究了佐剂的不断发展的作用及其与表观遗传机制的相互作用。还研究了利用表观遗传变化以增强辅助效率的潜力,并探讨了在治疗环境中表观遗传抑制剂作为辅助剂的新颖使用。
盐胁迫是继干旱之后第二大破坏性非生物胁迫,限制了全球水稻产量。通过遗传增强耐盐性是一种有前途且经济有效的方法,可在盐胁迫地区提高产量。耐盐性育种具有挑战性,因为水稻对盐胁迫的反应具有遗传复杂性,受低遗传力和高 G×E 相互作用的次要基因控制。许多生理和生化因素的参与进一步复杂化了这种复杂性。绿色革命时代以提高产量为目标的密集选择和育种工作无意中导致了控制耐盐性的基因座逐渐消失,品种间遗传变异性显著降低。遗传资源利用有限和改良品种遗传基础狭窄导致现代品种对耐盐性的响应处于停滞状态。野生种是拓宽驯化水稻遗传基础的极佳遗传资源。利用未被充分利用的野生稻近缘种的新基因来恢复驯化过程中被消除的耐盐性位点,可使水稻品种获得显著的遗传增益。野生稻种 Oryza ru fi pogon 和 Oryza nivara 已被用于开发一些改良稻种,如 Jarava 和 Chinsura Nona 2。此外,增加序列信息获取途径和增强对野生近缘种耐盐性基因组学的了解,为在育种计划中部署野生稻种质提供了机会,同时克服了野生杂交中出现的交叉不亲和性和连锁阻力障碍。预育种是构建可用于育种计划的材料的另一种途径。应努力系统地收集、评估、表征和揭示野生稻的耐盐性机制
工作是在教育机构公民学院的教学居住计划中经验丰富的香蕉DNA提取的实践经验的报告 - 军事教授colares,高中一年级的学生。使用可负担的材料,例如香蕉,塑料容器,厨房盐,中性洗涤剂,酒精,水和筛子,以实用的方式接近教室中获得的理论原则。每个生物都有DNA中存在的基因组,在该基因组中,他负责存储信息和合成蛋白质并产生人体的核糖核酸(RNA),这对于生物功能非常重要。文章强调了学生动态的细微差别,塑造学习的教学策略以及从学生知识中产生的反思。在实验室旅程中突出的结果,我们不仅了解了DNA提取的技术细节,而且还了解了DNA在我们的生活中的重要性和科学进步。以及遗传教学如何影响学生的生活及其正确的重要性。
1 日内瓦大学儿科肿瘤学和血液学 CANSEARCH 研究平台,瑞士日内瓦 1205;nicolas.waespe@ispm.unibe.ch(NW);sven.strebel@ispm.unibe.ch(SS);simona.mlakar@unige.ch(SJM);tiago.nava@unige.ch(TN)2 伯尔尼大学社会与预防医学研究所,瑞士伯尔尼 3012;claudia.kuehni@ispm.unibe.ch 3 伯尔尼大学细胞与生物医学科学研究生院(GCB),瑞士伯尔尼 3012 4 伯尔尼大学健康科学研究生院(GHS),瑞士伯尔尼 3012 5 查尔斯-布鲁诺癌症中心,CHU Sainte-Justine 研究中心,儿科系,加拿大魁北克省蒙特利尔 H3T 1C5; maja.krajinovic@umontreal.ca 6 加拿大蒙特利尔 CHU Sainte-Justine 儿科系临床药理学部,魁北克省蒙特利尔 H3T 1C5,加拿大 7 加拿大蒙特利尔大学医学院药理学系,魁北克省蒙特利尔 H3T 1J4,加拿大 8 伯尔尼大学医院内科学系儿科血液学/肿瘤学分部,瑞士伯尔尼 3012 伯尔尼 9 日内瓦大学医院妇女、儿童和青少年部,儿科肿瘤学和血液学分部,瑞士日内瓦 1205 * 通讯地址:Marc.Ansari@hcuge.ch;电话:+41-79-553-6100
生殖衰老始于女性的30多岁,更年期通常发生在48至50岁之间,而卵母细胞库存(卵巢衰老)的耗尽是女性一生中不可避免的过程,最终会影响预期和健康的影响。卵巢老化是一个多维过程,其特征是卵泡数量和卵母细胞质量的逐渐下降,大约37岁左右,导致后代的不育和先天性残疾增加(1)。尽管重要性很重要,但对人类卵巢衰老的基本生物学机制知之甚少,尤其是在延长女性生育能力和改善人口质量方面。尽管预期人类的预期寿命在过去一个世纪中显着延长,但绝经年龄在很大程度上保持不变,这暗示了遗传和表观遗传因素的潜在作用,但典范标志着启动的启动偏离衰老的启动,而在47%的案例中,遗传的年龄是遗传的,而不是遗传的年龄。口服避孕药,饮酒,吸烟和体育锻炼水平(3,4)调节这种内分泌老化过渡。最近,下丘脑 - 垂体轴的衰老以及端粒酶活性降低已成为生殖衰老的关键催化剂(5)。卵泡闭锁是由于颗粒和卵母细胞的细胞凋亡引起的,这是由活性氧(ROS)产生过多引起的,也会导致卵巢衰老。Wang L.等。 inWang L.等。in最近的研究使遗传多态性确定为自然更年期年龄异质性的主要贡献者,尤其是对于参与DNA修复途径的基因。病理卵巢衰老,例如早产卵巢不足和早期,也表现出相似的遗传敏感性(6)。这一现象的核心是卵巢功能的卵泡发育和维持,尤其是DNA甲基化的表观遗传修饰,在卵巢发育的关键阶段对基因表达产生了显着影响。这些研究提供了阐明遗传学与环境对卵巢衰老的相互作用的影响。该研究主题重点介绍了描述生理和病理卵巢衰老的遗传和表观遗传机制方面所取得的一些进步,从而提供了对延长女性生殖寿命的潜在机制的见解。研究表明DNA甲基化(DNAM)衰老与生殖衰老之间的联系。但是,DNAM与更年期年龄之间的因果关系仍然不确定。技术进步使使用各种分子或表型生物标志物测量生物年龄成为可能。
乳腺癌 (BC) 是最常见的非皮肤癌,也是美国女性癌症死亡的第二大原因。乳腺癌的发生和发展可以通过遗传和表观遗传变化的积累来进行,这些变化使转化细胞能够逃脱正常的细胞周期检查点控制。与核苷酸突变不同,DNA 甲基化、组蛋白翻译后修饰 (PTM)、核小体重塑和非编码 RNA 等表观遗传变化通常是可逆的,因此可能对药物干预有反应。表观遗传失调是抗肿瘤免疫力受损、免疫监视逃避和免疫疗法耐药的关键机制。与黑色素瘤或肺癌等高度免疫原性的肿瘤类型相比,乳腺癌被视为免疫静止肿瘤,其肿瘤浸润淋巴细胞 (TIL) 数量相对较少、肿瘤突变负荷 (TMB) 较低,对免疫检查点抑制剂 (ICI) 的反应率适中。新兴证据表明,针对异常表观遗传修饰因子的药物可能通过几种相互关联的机制增强 BC 中的宿主抗肿瘤免疫力,例如增强肿瘤抗原呈递、激活细胞毒性 T 细胞、抑制免疫抑制细胞、增强对 ICI 的反应以及诱导免疫原性细胞死亡 (ICD)。这些发现为使用表观遗传药物与免疫疗法的组合方法作为改善 BC 患者预后的创新范例奠定了非常有希望的基础。在这篇综述中,我们总结了目前对表观遗传修饰因子如何发挥作用的理解
摘要使用微型氢发电厂(MHPP)已将自己确立为解决农村孤立地区能源贫困问题的基本工具,不仅在此领域,而且在大规模发电中也成为了最常用的可再生能源。尽管所使用的技术在过去几十年中取得了重要进步,但通常已应用于大型水力系统。这个事实将孤立的MHPPS的使用降级到背景。在这种情况下,这些项目的选项策略的制定仍然有很大的改善,实际上,这些项目仍然限于使用拇指规则。它导致了可用资源的次级最佳使用。这项工作建议使用遗传算法(GA)来协助MHPP的设计,从而找到MHPP不同元素的最合适位置,以实现对资源的最有效使用。为此,第一个开发了植物的详细模型,然后是最佳设计的优化问题,该问题是通过考虑真实的地形地形数据来提出的。这个问题都以single(以最大程度地降低成本)和多目标(以最大程度地降低成本,同时最大化生成的功率)模式,从而对使用气体在农村孤立区域设计MHPP的潜力进行了深入的分析。为了验证所提出的方法,它将应用于洪都拉斯的真实场景的一组地形数据。将所达到的结果与基线整数变量算法和其他元元素算法进行了比较,这表明在成本方面,解决方案的改善显着改善。
体细胞DNA拷贝数变化(CNV)在癌症中很普遍,并且可以驱动癌症进展,尽管在改变细胞信号状态下通常具有未表征的作用。在这里,我们整合了5,598个肿瘤样品的基因组和蛋白质组学数据,以鉴定导致异常信号转导的CNV。由此产生的关联概括了已知的激酶 - 基底关系,并进一步的网络分析优先考虑可能因果基因。在癌细胞系中复制了43%,包括在多种肿瘤类型中鉴定出的44种强大的基因磷材料。实验验证了几个预测的河马信号调节剂。使用RNAi,CRISPR和药物筛选数据,我们发现癌细胞系中激酶成瘾的证据,确定靶向激酶依赖性细胞系的抑制剂。我们建议基因的拷贝数状态,作为激酶抑制差异影响的有用预测指标,这是一种抗癌疗法的策略。
