结构破坏。Among the many transition metal-based catalysts, manganese oxides (MnO x ) have an abundance of valence states and crystal structures that exhibit excellent electrocatalytic performance in various electrochemical reactions, with MnO 2 showing unique catalytic activity and stability for the acidic OER, making MnO 2 -based materials show unprecedented promise in the field of OER.其中,基于MNO 2的材料在OER领域表现出了前所未有的前景。尽管基于锰的氧化物的电催化活性与其他金属(例如镍,钴和铁)没有相同的电催化活性,但锰是唯一与自然光合周期相关的金属,可确保其可持续性和更新。29 - 32 MNO 2具有许多对OER具有积极作用的优势,例如(1)存在大量缺陷边缘,可以通过提供更多贵金属的负载位点来改善催化活性; (2)MNO 2具有可调且可以符合不同应用的各种形态和电子结构; (3)酸性环境中的强腐蚀电阻率。MNO 2的多样性是由于其[MNO 6]的不同堆叠和连接模式所致。33α-MNO 2具有正交单位单元,其晶格由[2×2] [1×1]隧道结构组成,隧道尺寸约为4.6Å。 β -MNO 2具有金红石结构,其晶格由[1×1]隧道结构组成,隧道尺寸约为2.3Å。γ -MNO 2的晶格由[1×1] [2×2]隧道结构组成,隧道尺寸约为0.7Å。37 - 4034 - 36,因为MNO 2具有许多因素,例如低成本特性,丰富的缺陷边缘,常规隧道结构和独特的酸耐药性,可保证酸性OER的催化稳定性,因此MNO 2基于MNO 2的材料在OER领域具有良好的前景。MNO 2引起的OER过程涉及Mn 2+,Mn 3+和Mn 4+的氧化状态之间的可逆循环,以及氧物种的表面吸附和解吸。
1维(1D)配位聚合物指的是通过金属结合配体组中掺入金属离子或主链中的金属离子的大分子。,由于金属配体键的性质,它们比传统聚合物具有调节聚合物结构和功能的内在优势。因此,它们具有智能和功能结构以及伴随剂和治疗剂的巨大潜力。水溶性的1D配位聚合物和组件是协调聚合物的重要亚型,具有与生物和医疗应用等水性系统中苛刻应用的独特兴趣。本评论重点介绍了水溶性1D协调聚合物和组件的最新进展和研究成就。概述涵盖了1D配位聚合物的设计和结构控制,它们的胶体组件,包括纳米颗粒,纳米纤维,胶束和囊泡,以及制造的散装材料,例如膜无液体冷凝器,安全墨水,水凝胶驱动器和智能面料。最后,我们讨论了这些坐标国家聚合物结构和材料中几个的潜在应用,并在水性坐标聚合物的领域中展现出前景。
,Erwin Fraiponts 8,Gary Tresadern 4,Peter W. M. Roevens 9,Harrie J. M. Gijsen 3和Bart de Strooper 1,10 *,来自1 Neuroscience,Ku Leuven,Leuven,Leuven,Belgium,Belgium; 2脑和疾病研究中心,VIB,鲁汶,比利时; 3发现化学的拆分和4计算化学的拆分,詹森研究与开发,詹森制药(Janssen Pharmaceutica NV),比利时贝尔斯(Beerse); 5个鼻虫生物发现,西班牙巴塞罗那; 6西班牙巴塞罗那巴塞罗那超级计算中心的生命科学系6; 7西班牙巴塞罗那的Catalana de Recerca I EstudisAvançats(ICREA); 8查尔斯河实验室,比利时贝尔斯; 9校园战略与合作伙伴关系,比利时贝尔斯,Janssen Pharmaceutica NV; 10英国伦敦大学伦敦大学学院痴呆研究所
摘要:人们普遍认为溶解有机物 (DOM) 可以控制环境中痕量金属的溶解度和反应性。然而,控制金属-DOM 络合的机制仍然不清楚,主要是因为在组成 DOM 的复杂有机化合物混合物中分离和定量金属-有机物种的分析难度很大。本文,我们描述了一种使用液相色谱在线电感耦合等离子体质谱 (LC-ICP-MS) 对有机-金属络合物进行定量分离和元素特异性检测的方法。该方法实施柱后补偿梯度以稳定整个 LC 溶剂梯度中的 ICP-MS 元素响应,从而克服了实现 LC-ICP-MS 定量准确度的主要障碍。通过外部校准和内部标准校正,该方法得到的有机-金属络合物浓度始终在其真实值的 6% 以内,无论络合物的洗脱时间如何。我们利用该方法评估了四种固定相(C18、苯基、酰胺和五氟酰基苯基丙基)对苏旺尼河富里酸和苏旺尼河天然有机质中环境相关痕量金属(Mn、Fe、Co、Ni、Cu、Zn、Cd 和 Pb)回收率和分离率的影响。C18、酰胺和苯基相通常可获得最佳的金属回收率(除 Pb 外,所有金属的回收率均 > 75%),其中苯基相分离极性物质的程度大于 C18 或酰胺相。我们还对氧化和还原土壤中有机结合的 Fe、Cu 和 Ni 进行了分馏,揭示了土壤氧化还原环境中金属-DOM 形态的不同。通过对 DOM 结合金属进行定量分馏,我们的方法为加深对整个环境中金属-有机络合物的机理理解提供了一种手段。■ 引言
可容纳形状的电池对各种便携式电子设备非常感兴趣。在这项工作中,提出了基于添加剂制造(AM)技术和半固体电极(SSE)的组合,用于具有成本效益的可配合性能电池的新制造概念。制造过程分为两个步骤。首先,电化学细胞由基于立体光刻的技术(SLA)打印并随后组装。在第二步中,通过双注射机制将可流动的SSE注入细胞中,以并联引入两个SSE。发现细胞的注射器出口,细胞入口和形状在注射过程中起重要作用,但观察到SSE的制定会影响流变学和电化学特性。为了证明概念的证明,具有我们大学徽标形状的电池是使用基于Zn的和MNO 2的SSE制造的,该电池可实现高利用率(> 150 mAh g-1 mno 2),可接受的周期稳定性(0.45%h-1),从而显示出拟议的建议形状可行的indeboboble-table-table-table-table-table-table-explable-explable-explable-explable-explable-table-explable byter。最终将制造过程扩展到其他电池化学,从而提高了循环稳定性并确认制造概念的多功能性。
合成的DNA/RNA链是出色的工程材料,用于开发纳米版和纳米机器,可以在传感中找到应用,1个药物输送,2个成像3和分子运输。4 Watson-Crick – Frank-Lin碱基配对的高可编程性,以及相互作用的可逆性以及将其用作多功能分子支架的可能性,使合成DNA特别适合设计精确的纳米级结构。2 B,5,6基于DNA的纳米器件通常是通过理性设计的 - 可识别特定分子输入(例如核酸,7个小分子8或蛋白质)的特定分子输入的核酸域而开发的。9通过多种外源刺激(包括温度10
摘要:尽管取得了重大进展,但癌症仍然是一种难以治疗的疾病。严重的副作用、耐药性的爆发和较差的选择性是目前临床使用的经典金属抗癌疗法的一些问题。仍然需要新的治疗方法来提高癌症患者的生存率,避免癌症复发。在此,我们回顾了两种有前途的(至少在我们看来)新策略来提高过渡金属配合物的疗效。首先,我们考虑了将两个含有不同金属中心的生物活性片段组装到同一分子中的可能性,从而获得异双金属配合物。与单金属配合物进行了关键比较。所审查的文献分为两类:铂的情况;金的情况。其次,讨论了金属配合物与靶向部分的结合。特别是,我们重点介绍了一些有趣的例子,即根据三级靶向方法靶向癌细胞器的化合物,以及根据二级靶向策略靶向整个癌细胞的复合物。
金属配位导向大环复合物,其中大环结构由金属-配体配位相互作用形成,已成为一种有吸引力的超分子支架,可用于创建生物传感和治疗应用材料。尽管最近取得了进展,但不受控制的多环笼和线性低聚物/聚合物是最有可能的金属配体组装产物,这对当前的合成方法提出了挑战。本文我们概述了使用可折叠配体或通过组装两亲配体合成金属配位导向大环复合物的最新合成方法。这篇小综述为高效制备具有可预测和可控结构的金属配位导向大环复合物提供了指导,这些复合物可在许多与生物相关的领域得到应用。
摘要:由于传统燃料燃烧产生的能源成本不断增长,配电网容量有限,以及基于可再生能源的不稳定装置数量不断增加,因此需要为最终用户实施稳定和调节负载的系统。在企业内部微电网中运行的电池储能系统 (BESS) 能够在一天中的任何时区管理累积的能量。使用电力存储设施的价格套利策略,我们可以降低高峰需求期间高电价的成本。本研究旨在确定在企业中实施价格仲裁策略时,在微电网中运行的储能系统的容量和电力设置的最有效方法。这种方法应包括考虑消费者系统的需求概况、与电力相关的费用以及电力存储成本。所提出的确定性方法基于使用定义的参数“边际收入弹性”。本研究中,储能规模是指用于实施价格套利策略的电池储能系统的功率和电容量。
根据矩阵和细胞密度,大于0.6-1 mm的人造3D组织模型存在着关键的挑战。根据Grimes等人报道的3D球体的体外测量。[4],通过实验观察到氧扩散距离的上限为232±22 µm。在较大的组织模型中,渗透无法通过渗透来确保氧气和养分的供应,从而导致坏死核心产生。[5]在体内,血管系统通过分支到较小的血管和毛细血管的大型动脉的复杂网络来保证营养供应。[6]要超过人造组织或基于细胞的ORGA-NOID,超过一定厚度,有必要产生微通道网络,以通过供应氧气和养分来保持细胞的生存。微通道网络必须灌注