。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月17日。 https://doi.org/10.1101/2025.02.12.12.637574 doi:Biorxiv Preprint
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2025年2月6日。 https://doi.org/10.1101/2025.02.05.636750 doi:Biorxiv Preprint
蛋白质会经历无数种化学修饰,这些修饰会调节其结构、稳定性、功能和与其他分子的相互作用,从而为生物系统增加巨大的复杂性和调节范围。此类翻译后修饰 (PTM) 可由细胞刺激或应激引发,并启动下游反应,使细胞适应其环境并介导增殖、分化和死亡等变化。瓜氨酸可以存在于蛋白质中,这是精氨酸残基的翻译后修饰的结果,称为肽精氨酸脱亚胺化或瓜氨酸化。由于瓜氨酸是一种非编码氨基酸,因此它在蛋白质中的存在表示刺激和反应。尽管瓜氨酸化早在 20 世纪 60 年代就被首次证实 [1],第一种瓜氨酸化酶肽酰精氨酸脱亚胺酶 (PADI 或 PAD) 也在 20 世纪 80 年代初被分离出来 [2],但仍有越来越多的细胞活动和病理被证明受到瓜氨酸化的影响,并且在过去 15 - 20 年间取得了长足的进步。现在人们了解到,由五种 PADI 酶组成的小家族具有多种生理和病理生理功能(详见 [3]),但是,我们仍然缺乏对细胞内 PADI 调控机制原理以及它们发挥细胞和生物体功能的机制的基本了解。我们对瓜氨酸化的理解源自许多不同的领域,包括神经生物学、免疫学、生殖生物学、皮肤生理学、细胞信号传导、染色质生物学和转录,以及自身免疫、神经退行性疾病和癌症。尽管 PADI 的调节范围显然很广,但这些酶表现出高度的序列和结构保守性,这表明某些机制原理可能适用于不同同工酶的调节。此外,分析方法学的最新进展,例如靶向质谱和调节 PADI 功能的化学生物学努力,可能适用于许多不同的生物系统。因此,显然需要一个论坛,让来自瓜氨酸化研究不同方面的科学家聚集在一起,讨论他们的工作并交流想法,以促进该领域的进步。因此,第一届蛋白质瓜氨酸化国际会议于 2022 年 10 月在英国举行,得到了皇家学会的慷慨支持(https://royalsociety.org/science-events-and-lectures/2022/10/protein-citrullination/)。本次讨论会聚集了细胞和发育生物学、细胞信号传导、基因转录、癌症生物学和自身免疫领域的科学家,同时还结合了质谱和药理学领域的顶尖专家的重要演讲。本期专题紧随此次会议,报道了与会者的最新研究成果,包括九篇研究论文和六篇评论文章,涵盖了广泛的主题。在本简介中,我们总结了本期所介绍的进展,其中包括对已建立的 PADI 功能的新机制理解和瓜氨酸化生物学中出现的新主题。
简介:线粒体是心脏的中央能量发生器,通过氧化磷酸化 (OXPHOS) 系统产生三磷酸腺苷 (ATP)。然而,线粒体还指导关键细胞决策和对环境压力源的反应。方法:本研究评估了长期电磁压力是否会影响线粒体 OXPHOS 系统和心肌的结构改变。为了诱发长期电磁压力,小鼠暴露于 915 MHz 电磁场 (EMF) 28 天。结果:对暴露于 EMF 的小鼠的线粒体 OXPHOS 容量的分析表明,复合物 I、II、III 和 IV 亚基的心脏蛋白表达显著增加,而 ATP 合酶 (复合物 V) 的 α 亚基的表达水平在各组之间保持稳定。此外,使用 Seahorse XF24 分析仪测量分离的心脏线粒体的呼吸功能表明,长时间的电磁应力会改变线粒体的呼吸能力。然而,与对照组相比,暴露于 EMF 的小鼠血浆中丙二醛(氧化应激指标)的水平和心肌线粒体驻留抗氧化酶超氧化物歧化酶 2 的表达保持不变。在左心室的结构和功能状态下,在受到电磁应力的小鼠的心脏中未发现任何异常。讨论:总之,这些数据表明长时间暴露于 EMF 可能通过调节心脏 OXPHOS 系统影响线粒体的氧化代谢。
背景:阿尔茨海默氏病的特征是异常的β-淀粉样蛋白(Aβ)斑块积累,TAU高磷酸化,反应性氧化应激,线粒体功能障碍和突触损失。甲霉素是一种饮食类黄酮,已显示出在体外和体内发挥神经保护作用。在这里,我们旨在阐明米他汀保护作用所涉及的机制和途径。方法:对Myricetin的作用进行了对β42低聚物处理的神经元SH-SY5Y细胞和3×TG小鼠的作用。行为测试,以评估3×TG小鼠中典型素(14天,IP)的认知作用。通过蛋白质印迹评估了β-淀粉样蛋白前体蛋白(APP),突触和线粒体蛋白,糖原合酶激酶三酶3β(GSK3β)和细胞外调控激酶(ERK)2的水平。流式细胞仪测定,免疫荧光染色和透射电子显微镜用于评估线粒体功能障碍和反应性氧化应激。结果:我们发现,与对照治疗相比,三×TG小鼠的迈他汀治疗改善了空间认知,学习和记忆。myricetin在β42低聚物处理的神经元SH-SY5Y细胞以及3×TG小鼠中改善tau磷酸化以及突触前和突触后蛋白的降低。此外,米他素还减少了活性氧的产生,脂质过氧化和DNA氧化,并通过相关的GSK3β和ERK 2信号通路营救了线粒体功能障碍。结论:这项研究为细胞培养和体内的阿尔茨海默氏病小鼠模型中的细胞培养和体内的神经保护机理提供了新的见解。
旁系同源物 CUL 4 A 和 CUL 4 B 组装 cullin-RING E 3 泛素连接酶 (CRL) 复合物,调节多种染色质相关的细胞功能。尽管它们结构相似,但我们发现 CUL 4 B 独特的 N 端延伸在有丝分裂期间被大量磷酸化,而磷酸化模式在导致 X 连锁智力残疾 (XLID) 的 CUL 4 BP 50 L 突变中受到干扰。表型表征和突变分析表明,CUL 4 B 磷酸化是有效进行有丝分裂、控制纺锤体定位和皮质张力所必需的。虽然 CUL 4 B 磷酸化触发染色质排斥,但它促进与肌动蛋白调节剂和两个以前未被认识的 CUL 4 B 特异性底物受体 (DCAF) LIS 1 和 WDR 1 的结合。事实上,共免疫沉淀实验和生化分析表明 LIS 1 和 WDR 1 与 DDB 1 相互作用,并且 CUL 4 B 的磷酸化 N 端结构域增强了它们的结合。最后,人类前脑类器官模型表明 CUL 4 B 是形成与前脑分化开始相关的稳定脑室结构所必需的。总之,我们的研究发现了以前未被发现的与有丝分裂和大脑发育相关的 DCAF,它们通过磷酸化依赖机制特异性结合 CUL 4 B,但不结合 CUL 4 BP 50 L 患者突变体。
摘要:目的:热休克蛋白70(HSP70)家族是一组高度保守的分子助力者,对于维持细胞稳态必不可少。这些蛋白质对于蛋白质折叠,组装和降解是必需的,并且涉及从应力条件中恢复细胞。HSP70蛋白质因热休克,氧化应激和致病性感染而上调。他们的主要作用是防止蛋白质聚集,重新折叠错误折叠的蛋白质以及靶向不可损害的蛋白质的降解。鉴于它们参与了基本细胞过程和应激反应,HSP70蛋白对于细胞存活和调节癌症,神经变性和其他病理的疾病结局至关重要。本研究旨在了解各种HSP70成员的主要结构,物理化学特性,磷酸化,泛素化和替代聚腺苷酸化位点预测。方法:SMART和Internoscan软件用于域分析。分别使用Protparam,NetPhos 3.1服务器DTU和Mubisida进行物理化学分析,磷酸化和泛素化站点分析。使用EST数据库研究了替代聚腺苷酸化。结果:域分析表明,某些HSP70成员中存在盘绕圈和核苷酸结合结构域。五个HSP70家庭成员在其3'UTR中具有替代的聚腺苷酸化位点。结论:确定工作为其结构,功能,相互作用组和聚腺苷酸化模式提供了宝贵的见解。研究其在癌症等疾病中的治疗潜力可能会有所帮助。
。CC-BY-NC-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2025 年 1 月 10 日发布了此版本。;https://doi.org/10.1101/2025.01.08.631869 doi:bioRxiv 预印本
这项研究探讨了使用理性行动理论(TRA)对学术研究人员接受AI写作工具的决定因素。通过对150名研究人员的横断面调查,检查了态度,主观规范和感知障碍对采用这些技术意图的障碍的影响。结构方程模型(SEM)用于评估测量和结构模型。发现有利态度和主观规范对使用AI写作工具的意图的积极影响。有趣的是,感知到的障碍并没有显着影响态度或进取,这表明在学术背景下,潜在的收益可能超过了AI写作工具采用的障碍。相反,感知的障碍不会直接影响态度和意图。TRA模型具有相当大的解释和预测能力,表明其在理解研究人员中采用AI写作工具方面的有效性。该研究在各个学科和职业阶段的各种样本提供了可能可以推广到类似学术环境的见解,尽管需要使用大型样本进行研究以确认更广泛的适用性。结果为工具开发人员,学术机构和发行商提供了实用的指导,旨在促进学术界负责和高效的AI写作工具使用。调查结果提出了诸如证明清晰的生产力提高,建立AI写作工具计划以及开发全面培训计划等策略,可以促进负责任的采用。着重于培养积极态度,利用社会影响力以及解决障碍的策略在促进采用方面特别有效。这项开创性的研究研究了研究人员使用技术接受模型对AI写作工具的接受,有助于理解专业背景下的技术采用,并强调特定因素在检查采用意图和行为中的重要性。
随着对乳酸化研究的不断深入,蛋白质乳酸化修饰 越来越受到研究者的关注。而乳酸生成及代谢异常、基 因表达、修饰串扰等因素影响着乳酸化修饰动态平衡过 程。乳酸化修饰不仅在正常的细胞活动中发挥重要作用, 也参与调控年龄相关性疾病的发病机制。组蛋白乳酸化 主要通过调节相关基因的转录和表达来影响细胞的功能 状态,非组蛋白乳酸化则可以通过促进EndoMT,激活 信号通路,亚细胞定位和翻译后修饰串扰等功能,导致 年龄相关性疾病的发生和发展。然而,乳酸化修饰的调 控机制的研究尚且处于起步阶段,仍有许多未知功能和 新的修饰酶有待进一步探索,目前这些研究有助于揭示 乳酸化修饰的分布和调控机制以及在多种年龄相关性疾 病中的作用效果,并以此为依据转化为可应用于临床治 疗的手段是亟待解决的问题 。