摘要:聚合物膜的渗透性和反应性与用于货物输送的聚合物体的设计绝对相关。因此,我们在此将阿霉素负载(dox负载)的无反应性和刺激反应性聚合物的结构特征,渗透性和反应性与其体外和体内抗肿瘤性能相关联。聚合物囊泡(PHPMA),与聚[N-(4-异丙基苯甲酰胺)乙基酰胺乙基甲基甲基甲基酯(甲基甲基甲基酯)(Pppha)(Pppha)(pppha)(pppha)(pppha)(pppa),非pphha,nonnon block,nonnon block) poly [4-(4,4,5,5-甲基-1,3,2-二甲苯甲基-2- Yl)甲基丙烯酸酯] [Pbape,反应性氧(ROS) - 响应型块]或Poly [2-(二异丙基氨基)乙酰乙烯乙烯酸乙烯酸乙烯酸乙烯酸乙烯酸乙烯酸乙酯](Pdpa)(pdpa),pdpa,ph-ph-block)。与抗肿瘤活性相比,基于PDPA的聚合体表现出出色的生物学性能,其抗肿瘤活性显着增强。,我们将这种行为归因于酸性肿瘤环境中快速触发的DOX释放,这是由pH响应性多聚合体拆卸pH <6.8所引起的。可能,所选肿瘤模型的ROS浓度不足会削弱Ros响应囊泡降解的速率,而PPPHA块的无反应性质显着影响这种潜在的纳米甲酶的性能。
目的:本研究旨在设计和评估基于微海绵的盐酸异丙嗪给药系统。微海绵给药系统设计用于药物的位点特异性和控制释放,通过使用邻苯二甲酸醋酸纤维素来改善药物的位点特异性吸收。材料和方法:微海绵采用改进的准乳液溶剂扩散技术配制而成。通过 FTIR 研究了盐酸异丙嗪、邻苯二甲酸醋酸纤维素、乙基纤维素和聚乙烯吡咯烷酮之间的化学相互作用,FTIR 结果证实药物和聚合物之间没有化学反应。药物和聚合物的相容性研究通过 DSC 得到证实。结果:FTIR 结果证实药物和聚合物之间没有化学反应。体外药物释放率在 91.97% 至 98.78% 之间,配方 MS5 显示出最高的 % CDR。优化后的配方 (MS5) 表现出良好的包封率 (93.6%)、浮力 (78%) 和累积药物释放率 (98.78%)。SEM 显示异丙舒林盐酸盐以控释模式从球形多孔微海绵中释放。结论:本研究提供了一种新方法来配制和评估异丙舒林盐酸盐微海绵以治疗妊娠期间早产。
n型有机电化学晶体管(OECT)和有机字段效应的晶体管(OFET)的发达较不如其P型对应物。在此中,据报道,含有新型氟乙烯烯酚 - 乙烯基 - 苯苯(FSVS)单位的聚二硫代二酰亚胺(PNDI)的共聚物是N型OECT和N型OTET的有效材料。与寡素(乙二醇)(EG7)侧链P(NDIEG7-FSVS)的PNDI聚合物,A效率为0.2 f cm-1 v-1 s-1的高μC*,超过了基准N-typ pg4ndi-t2和pgti-gti。- 4.63 eV的深层腔内p(ndieg7-fsvs)具有超低阈值电压为0.16 v。 MEV,在N型OFET中导致高高度电子迁移率高达0.32 cm 2 v-1 s-1。 这些结果表明,对于下一代效果N型有机电子产品,同时实现较低的Lumo和更紧密的分子堆积的巨大潜力。- 4.63 eV的深层腔内p(ndieg7-fsvs)具有超低阈值电压为0.16 v。 MEV,在N型OFET中导致高高度电子迁移率高达0.32 cm 2 v-1 s-1。这些结果表明,对于下一代效果N型有机电子产品,同时实现较低的Lumo和更紧密的分子堆积的巨大潜力。
本文包含的信息,包括但不限于数据,陈述和典型价值观,以真诚地给出。lg Chem不提供任何保证或保证,表示或暗示,(i)在本文中所述的结果将在结束条件下或(ii)在任何纳入LG化学材料,产品,建议或建议的设计的有效性或安全性下获得。此外,本文包含的任何信息均不得解释为具有法律约束力的一部分。尤其是,典型值应仅视为参考值,而不是结合最小值。每个用户都承担着自己确定LG Chem材料,产品,建议或建议其自身特定用途的适用性的全部责任。每个用户必须识别并执行所需的所有测试和分析,以确保其成品零件包含LG化学材料或产品将是安全且适合在最终使用条件下使用的。由于产品的质量提高,可以更改本文包含的数据。
N. 佩雷拉 1,2# , S. 贡萨尔维斯 1,2,3# , JC 巴博萨 1 , R. 贡萨尔维斯 4 , CR 图比奥 5 , JL
RA、Einhorn D、Galindo RJ、Gardner TW、Garg R、Garvey WT、Hirsch IB、Hurley DL、Izuora K、Kosiborod M、Olson D、Patel SB、Pop-Busui R、Sadhu AR、Samson SL、Stec C、Tamborlane WV Jr、Tuttle KR、Twining C、Vella A、Vellanki P、Weber SL。美国临床内分泌学会临床实践指南:制定糖尿病综合护理计划 - 2022 年更新。Endocr Pract。2022 年 10 月;28(10):923-1049。doi:10.1016/j.eprac.2022.08.002。电子版 2022 年 8 月 11 日。勘误表:Endocr Pract。2023 年 1 月;29(1):80-81。 doi: 10.1016/j.eprac.2022.12.005。PMID: 35963508;PMCID: PMC10200071。13. Blumer I、Hadar E、Hadden DR 等。糖尿病与妊娠:内分泌学会临床
钢渣是炼钢过程的副产品。由于钢渣生成率高,且其中含有大量有毒而有价值的金属,如钒,因此从该产品中回收钒是十分必要的。在本研究中,将炼钢转炉渣(含约1.96wt.% V 2 O 5 )磨碎至平均粒度为85µm,采用乙酸浸出法回收钒。在固定乙酸浓度(1摩尔)和固液重量比(200毫升中1克钢渣)的情况下,研究了时间(0至120分钟范围内)和温度(0至80⁰C范围内)对浸出过程的影响。结果表明,增加时间和降低温度(活化能等于-11.4kJ/mol)可提高钒的浸出效率。在 0 ⁰ C 和 90 分钟时达到最大浸出效率。动力学研究表明,通过固体层的热量扩散是钒在乙酸中溶解的控制步骤。此外,热导率 (ka) 随温度升高而降低 (ka=21877.6/T3),因此热量以较慢的速度从反应区转移到颗粒表面。
摘要:乙烯与极性单体的直接共聚以产生功能性聚集素,由于其简单的操作过程和可控的产品微观结构,因此仍然具有很高的吸引力。低成本的镍催化剂已在学术界广泛使用,用于合成极性聚乙烯。但是,适合工业生产条件的高温共聚催化剂的发展仍然是一个重大挑战。由最终共聚物分类,本综述提供了镍复合物在过去五年中较高温度下催化镍复合物的研究进度的综合摘要。乙二醇丙烯酸酯共聚物,乙二醇 - 丙烯酸丁酯共聚物,乙烯 - 其他基本极性单体共聚物和乙烯 - 特殊极性单体共聚物的聚合结果彻底总结了。所涉及的镍催化剂包括磷酸 - 苯酸酯类型,双膦氧化物类型,磷酸 - 键盘型,磷酸苯甲胺类型和磷酸 - 二元酸酯类型。通过这些催化剂的有效调节,分子量,分子量分布,分子量分布,熔点和极性单体掺入比例进行了结论和讨论。它揭示了催化剂系统的优化主要是通过催化剂结构的理性设计,额外的添加剂引入和单位催化剂异质化实现的。因此,一些出色的催化剂能够产生与商业产品非常相似的极性聚乙烯。要实现工业化,必须进一步强调高温共聚系统的基本科学以及所得的极性聚乙烯的应用性能。
对益生元分子的搜索正式进入了詹姆斯·韦伯(James Webb)太空望远镜的新时代。船上近红外仪器的功能比在空间仪器中提供的敏感性和分辨率更高。计划推出更多近红外望远镜(例如2025年的Spherex),必须拥有手头上重要分子的实验室数据,以指导该频谱区域的观察结果。我们在这里介绍了1中的益生元乙二醇(HC 3 N)分子的第一个已发表的线列表。5 µm区域。 分子通过使用低温缓冲液冷却来冷却至20 K,从而获得了2ν1频段的分辨良好的RO振动状态,并使用蛀牙调查光谱探测并分配了分配。 使用PGOPHER计算旋转常数,并根据氰化氢测量光谱线强度。 我们建议HC 3 N 1。 5 µM条带作为Hycean和超级地球体的传播光谱的观察靶标。5 µm区域。分子通过使用低温缓冲液冷却来冷却至20 K,从而获得了2ν1频段的分辨良好的RO振动状态,并使用蛀牙调查光谱探测并分配了分配。使用PGOPHER计算旋转常数,并根据氰化氢测量光谱线强度。我们建议HC 3 N 1。5 µM条带作为Hycean和超级地球体的传播光谱的观察靶标。