量子态的检测可能涉及该状态的破坏。量子物理定律是目前限制新一代光学原子钟稳定性的一个因素,这可能会重新定义秒,即时间的 SI 单位。解决其稳定性问题的一个潜在解决方案是使用量子纠缠。纠缠允许两个原子或离子表现出彼此相同的属性,而无需物理连接。这意味着可以观察其中一个原子或离子的状态,而不会破坏另一个原子或离子的状态。该项目将使用基于量子纠缠的技术来提高光学原子钟的短期稳定性,超越目前的限制。研究结果将提高基于可扩展纠缠的精密光谱学,并对加速度计、重力仪、陀螺仪和磁力仪等更广泛的量子传感器产生直接影响。
各组织正在创建生态系统,在这个生态系统中,它们可以进行协作和实验,以拓宽对量子技术的理解,以及如何在自己的特定环境中使用量子技术。例如,空中客车公司至少五年来一直在探索量子技术的应用,例如识别飞机制造过程中的复杂问题、为航空航天平台开发安全通信或研究天基重力仪。1 2018 年,该公司成立了一个量子技术应用中心,致力于解决该领域的一系列问题。2 在 2019 年的量子挑战赛中,它与世界各地的专家合作,通过量子计算解决了五个围绕飞行物理的问题。3 两年后,它收购了量子传感初创公司 Q-Ctrl 的股份。4 同样,一些大型组织也开始在选定领域开发量子技术用例:
摘要:我们总结了在“太空冷原子”虚拟社区研讨会上关于冷原子技术现状、它们在太空部署所带来的未来科学和社会机遇以及在太空运行冷原子之前所需的发展情况的讨论。讨论的冷原子技术包括原子钟、量子重力仪和加速度计以及原子干涉仪。预期应用包括计量学、大地测量学和由于气候变化等原因的地球质量变化测量,以及等效原理测试、暗物质搜索、引力波测量和量子力学测试等基础科学实验。我们回顾了冷原子技术的现状,概述了其太空资格的要求,包括发展路径和相应的技术里程碑,并确定了可能的探路者任务,为充分利用太空冷原子的潜力铺平道路。最后,我们提出了实现这些目标的可能路线图的初稿,并提议由感兴趣的冷原子、地球观测、基础物理学和其他潜在科学用户社区以及欧空局和国家空间和研究资助机构进行讨论。
摘要:我们考虑了相对论潮汐对时钟比较实验频率偏移的影响。在潮汐、轴对称和旋转的地球引力场中,推导出频率偏移和时间传递的相对论公式。借助描述固体地球潮汐响应的洛夫数,我们建立了地面时钟比较实验的潮汐效应与重力仪的局部重力潮汐之间的数学联系,这反过来又为我们提供了一种利用局部重力潮汐数据消除潮汐对时钟比较影响的方法。此外,我们开发了一种受扰开普勒轨道的方法来确定太空任务时钟比较的相对论效应,与传统的未受扰开普勒轨道方法相比,该方法可以进行更精确的计算。利用这种摄动方法,可以给出由于潮汐力、地球扁率等影响而引起的轨道变化对相对论效应的摄动。另外,作为结果的应用,我们模拟了地面时钟比较中频移的潮汐效应,并对天琴任务和 GPS 给出了一些估计。
量子传感和计量包括那些可以利用量子系统对环境影响的高灵敏度来更精确地测量物理特性和时间的应用(例如磁传感器和热传感器、重力仪、无 GPS 导航仪、时钟;TRL 为 4-9)。总体而言,虽然一些量子应用目前已经在商业上可用(例如 QKD 和 QRNG、量子退火器、量子模拟、原子钟和一些量子传感器),但第二波量子技术的当前使用仍然相对有限。这是由于技术限制以及技术性能和成本之间的权衡。需要进一步的进展。例如,在量子通信中,需要技术突破来开发量子中继器:这将是长距离 QKD、分布式量子计算和量子互联网的关键一步。关于量子计算,一个障碍是减轻随机波动,这些波动可能在处理过程中偶尔翻转或随机化量子位的状态。量子软件场景非常活跃,但相当分散:主要努力是定义语言,使程序员能够在高抽象层次上工作。与此同时,国际社会正在认识到这些量子技术在实现突破时在多个市场中的颠覆性潜力。
项目详情:目前,全球范围内正在开发用于量子技术的原子平台,例如原子钟、量子重力仪和加速度计以及原子干涉仪。但测量通常非常耗时且成本高昂,而用于后处理时间序列的最先进的算法在数值上要求很高。尽管过去二十年一直专注于使用测量相位参数的量子干涉仪进行传感,但对于自然界基本理论中出现的大多数可观测量,例如磁场、凝聚态分数和化学势,尚不存在最佳估计理论。最近,安德斯教授的团队开发了全局量子测温法 [1],这是一种用于温度估计的尺度尊重框架,也是相位估计之外的估计理论的第一个原型。这种现代温度估计策略充分利用了估计参数的对称性,并采用了贝叶斯推理技术。真正的优势在于它可以指导如何在实验测量中选择控制参数,以便在有限的资源下最大限度地获得信息增益。正如 [2] 中利用伯明翰大学进行的钾 (K) 实验的一组预先存在的数据所证明的那样,可以使用全局量子测温框架先验地优化释放-重新捕获冷原子实验的等待时间。最近,安德斯教授及其同事使用诺丁汉大学的冷原子平台将这种新的全局估计技术扩展到完全不同的量——原子数的测量,发现与以前的传感技术相比,精度提高了五倍 [3]。本理论项目将建立使用磁力仪和陀螺仪同时估计磁场和惯性旋转的最佳策略。这些策略将用于减少正在进行的原子实验中准确估计参数所需的数据数量,因为获取大量数据集的成本可能高得令人望而却步。学生的目标之一是推广最近开发的用于估计位置同构参数的框架 [4]。目标是找出可适用于量子技术中除相位之外的任何相关参数的最佳量子估计策略的方程。这将涉及变分法、群对称性和信息几何等分析技术。后续目标是调整理论框架,使其适用于正在进行的原子磁力仪实验 [5]。这还将涉及使用预测的量子估计策略分析原型量子磁力仪产生的时间轨迹。目标是确定此类策略是否能够实际降低磁场和惯性参数估计的不确定性。预计将与目前正在开发量子磁力仪的实验团队合作。[1] J. Rubio、J. Anders、LA Correa,PRL 127,190402 (2021) [2] J. Glatthard 等人,PRX Quantum 3,040330 (2022) [3] 通过自适应对称信息贝叶斯策略将冷原子实验的精度提高五倍,M. Overton 等人,arXiv:2410.10615 (2024)。[4] J. Rubio,Phys. Rev. A 110,