项目详情:目前,全球范围内正在开发用于量子技术的原子平台,例如原子钟、量子重力仪和加速度计以及原子干涉仪。但测量通常非常耗时且成本高昂,而用于后处理时间序列的最先进的算法在数值上要求很高。尽管过去二十年一直专注于使用测量相位参数的量子干涉仪进行传感,但对于自然界基本理论中出现的大多数可观测量,例如磁场、凝聚态分数和化学势,尚不存在最佳估计理论。最近,安德斯教授的团队开发了全局量子测温法 [1],这是一种用于温度估计的尺度尊重框架,也是相位估计之外的估计理论的第一个原型。这种现代温度估计策略充分利用了估计参数的对称性,并采用了贝叶斯推理技术。真正的优势在于它可以指导如何在实验测量中选择控制参数,以便在有限的资源下最大限度地获得信息增益。正如 [2] 中利用伯明翰大学进行的钾 (K) 实验的一组预先存在的数据所证明的那样,可以使用全局量子测温框架先验地优化释放-重新捕获冷原子实验的等待时间。最近,安德斯教授及其同事使用诺丁汉大学的冷原子平台将这种新的全局估计技术扩展到完全不同的量——原子数的测量,发现与以前的传感技术相比,精度提高了五倍 [3]。本理论项目将建立使用磁力仪和陀螺仪同时估计磁场和惯性旋转的最佳策略。这些策略将用于减少正在进行的原子实验中准确估计参数所需的数据数量,因为获取大量数据集的成本可能高得令人望而却步。学生的目标之一是推广最近开发的用于估计位置同构参数的框架 [4]。目标是找出可适用于量子技术中除相位之外的任何相关参数的最佳量子估计策略的方程。这将涉及变分法、群对称性和信息几何等分析技术。后续目标是调整理论框架,使其适用于正在进行的原子磁力仪实验 [5]。这还将涉及使用预测的量子估计策略分析原型量子磁力仪产生的时间轨迹。目标是确定此类策略是否能够实际降低磁场和惯性参数估计的不确定性。预计将与目前正在开发量子磁力仪的实验团队合作。[1] J. Rubio、J. Anders、LA Correa,PRL 127,190402 (2021) [2] J. Glatthard 等人,PRX Quantum 3,040330 (2022) [3] 通过自适应对称信息贝叶斯策略将冷原子实验的精度提高五倍,M. Overton 等人,arXiv:2410.10615 (2024)。[4] J. Rubio,Phys. Rev. A 110,
主要关键词